Skip to main content

Sex-Based Differences in Risk Determinants and Management of Heart Failure

  • 576 Accesses

Abstract

In the United States, more than 40% of heart failure (HF) patients are women, and among the elderly the prevalence of HF is greater in women than in men. Generally, HF affects women at a more advanced age with better global left ventricular systolic function, compared with men. The risk factors associated with HF and its underlying pathophysiology partially differ by sex. Hypertension and diabetes mellitus impose a greater risk of HF in women than in men, who are more likely to have coronary artery disease as an etiology. Most large HF trials have under-represented women in their enrollment numbers, and this has narrowed our understanding of sex-related differences in HF pathophysiology, diagnosis, and treatment. Among patients with HF, survival seems to be better in women than men, with the likely exception of patients with HF due to ischemic heart disease where prognosis is similar in both sexes. Current treatment guidelines are not sex-specific because sufficient data is not available, however, as the therapeutic options for HF expand, sex-based modifications to HF management may be considered in future revisions.

Keywords

  • Heart failure
  • Risk factors
  • Sex-specific treatment

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-71135-5_4
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-71135-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   149.00
Price excludes VAT (USA)

References

  1. Mastroianni ACFR, Federman D. Women and health research: ethical and legal issues of including women in clinical studies: volume I. Washington, DC: National Academies Press; 1994.

    Google Scholar 

  2. Kimmelstiel CD, Konstam MA. Heart failure in women. Cardiology. 1995;86:304–9.

    CrossRef  CAS  PubMed  Google Scholar 

  3. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–e292.

    CrossRef  PubMed  Google Scholar 

  4. Hsich EM, Piña IL. Heart failure in women: a need for prospective data. J Am Coll Cardiol. 2009;54:491–8.

    CrossRef  PubMed  Google Scholar 

  5. Lloyd-Jones DM, Larson MG, Leip EP, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation. 2002;106:3068–72.

    CrossRef  PubMed  Google Scholar 

  6. Kenchaiah S, Vasan RS. Heart failure in women—insights from the Framingham Heart Study. Cardiovasc Drugs Ther. 2015;29:377–90.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taylor AL, Lindenfeld J, Ziesche S, et al. Outcomes by gender in the African-American Heart Failure Trial. J Am Coll Cardiol. 2006;48:2263–7.

    CrossRef  PubMed  Google Scholar 

  8. Galvao M, Kalman J, DeMarco T, et al. Gender differences in in-hospital management and outcomes in patients with decompensated heart failure: analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Card Fail. 2006;12:100–7.

    CrossRef  PubMed  Google Scholar 

  9. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161:996–1002.

    CrossRef  CAS  PubMed  Google Scholar 

  10. Florescu M, Cinteza M, Vinereanu D. Chemotherapy-induced cardiotoxicity. Maedica (Buchar). 2013;8:59–67.

    Google Scholar 

  11. Geiger S, Lange V, Suhl P, Heinemann V, Stemmler HJ. Anticancer therapy induced cardiotoxicity: review of the literature. Anti-Cancer Drugs. 2010;21:578–90.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Shaikh AY, Shih JA. Chemotherapy-induced cardiotoxicity. Curr Heart Fail Rep. 2012;9:117–27.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Arany Z, Elkayam U. Peripartum cardiomyopathy. Circulation. 2016;133:1397–409.

    CrossRef  CAS  PubMed  Google Scholar 

  14. Ritchie C. Clinical contribution to the pathology, diagnosis, and treatment of certain chronic diseases of the heart. Edinburgh Med Surg J. 1849;185:333–42.

    Google Scholar 

  15. Porak C. De. L’influence reciproque de la grossesse et del maladies du Coeur [thesis]. Medical Faculty of Paris, France; 1880.

    Google Scholar 

  16. Rigolli M, Whalley GA. Heart failure with preserved ejection fraction. J Geriatr Cardiol. 2013;10:369–76.

    PubMed  PubMed Central  Google Scholar 

  17. Deswal A, Bozkurt B. Comparison of morbidity in women versus men with heart failure and preserved ejection fraction. Am J Cardiol. 2006;97:1228–31.

    CrossRef  PubMed  Google Scholar 

  18. Johnstone D, Limacher M, Rousseau M, et al. Clinical characteristics of patients in studies of left ventricular dysfunction (SOLVD). Am J Cardiol. 1992;70:894–900.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Latini R, Masson S. NT-proBNP: a guide to improve the management of patients with heart failure. EJIFCC. 2013;24:78–84.

    PubMed  Google Scholar 

  20. Wang TJ, Larson MG, Levy D, et al. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am J Cardiol. 2002;90:254–8.

    CrossRef  CAS  PubMed  Google Scholar 

  21. Wang TJ, Larson MG, Levy D, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004;350:655–63.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Christ M, Laule-Kilian K, Hochholzer W, et al. Gender-specific risk stratification with B-type natriuretic peptide levels in patients with acute dyspnea: insights from the B-type natriuretic peptide for acute shortness of breath evaluation study. J Am Coll Cardiol. 2006;48:1808–12.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Meyer S, van der Meer P, van Deursen VM, et al. Neurohormonal and clinical sex differences in heart failure. Eur Heart J. 2013;34:2538–47.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339:900–5.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.

    CrossRef  CAS  PubMed  Google Scholar 

  26. Smith I, Procter M, Gelber RD, et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet. 2007;369:29–36.

    CrossRef  CAS  PubMed  Google Scholar 

  27. Zuppinger C, Suter TM. Cancer therapy-associated cardiotoxicity and signaling in the myocardium. J Cardiovasc Pharmacol. 2010;56:141–6.

    CrossRef  CAS  PubMed  Google Scholar 

  28. Ntusi NB, Mayosi BM. Aetiology and risk factors of peripartum cardiomyopathy: a systematic review. Int J Cardiol. 2009;131:168–79.

    CrossRef  PubMed  Google Scholar 

  29. Scantlebury DC, Borlaug BA. Why are women more likely than men to develop heart failure with preserved ejection fraction? Curr Opin Cardiol. 2011;26:562–8.

    CrossRef  PubMed  Google Scholar 

  30. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med. 1996;334:1349–55.

    CrossRef  CAS  PubMed  Google Scholar 

  31. Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344:1651–8.

    CrossRef  CAS  PubMed  Google Scholar 

  32. Simon T, Mary-Krause M, Funck-Brentano C, Jaillon P. Sex differences in the prognosis of congestive heart failure: results from the Cardiac Insufficiency Bisoprolol Study (CIBIS II). Circulation. 2001;103:375–80.

    CrossRef  CAS  PubMed  Google Scholar 

  33. Ghali JK, Piña IL, Gottlieb SS, Deedwania PC, Wikstrand JC. Group M-HS. Metoprolol CR/XL in female patients with heart failure: analysis of the experience in Metoprolol Extended-Release Randomized Intervention Trial in Heart Failure (MERIT-HF). Circulation. 2002;105:1585–91.

    CrossRef  CAS  PubMed  Google Scholar 

  34. Shekelle PG, Rich MW, Morton SC, et al. Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials. J Am Coll Cardiol. 2003;41:1529–38.

    CrossRef  CAS  PubMed  Google Scholar 

  35. Yakoob MY, Bateman BT, Ho E, et al. The risk of congenital malformations associated with exposure to β-blockers early in pregnancy: a meta-analysis. Hypertension. 2013;62:375–81.

    CrossRef  CAS  PubMed  Google Scholar 

  36. Magee LA, Abalos E, von Dadelszen P, et al. How to manage hypertension in pregnancy effectively. Br J Clin Pharmacol. 2011;72:394–401.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  37. Group CTS. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;316:1429–35.

    CrossRef  Google Scholar 

  38. Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN, Investigators S. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325:293–302.

    CrossRef  PubMed  Google Scholar 

  39. Packer M, Poole-Wilson PA, Armstrong PW, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation. 1999;100:2312–8.

    CrossRef  CAS  PubMed  Google Scholar 

  40. Pfeffer MA, Braunwald E, Moyé LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992;327:669–77.

    CrossRef  CAS  PubMed  Google Scholar 

  41. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet. 1993;342:821–8.

    Google Scholar 

  42. Køber L, Torp-Pedersen C, Carlsen JE, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med. 1995;333:1670–6.

    CrossRef  PubMed  Google Scholar 

  43. Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative Group on ACE Inhibitor Trials. JAMA. 1995;273:1450–6.

    CrossRef  CAS  PubMed  Google Scholar 

  44. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/aha guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;136(6):e137–61.

    Google Scholar 

  45. O'Meara E, Clayton T, McEntegart MB, et al. Sex differences in clinical characteristics and prognosis in a broad spectrum of patients with heart failure: results of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) program. Circulation. 2007;115:3111–20.

    CrossRef  PubMed  Google Scholar 

  46. Cohn JN, Tognoni G, Investigators VHFT. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345:1667–75.

    CrossRef  CAS  PubMed  Google Scholar 

  47. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.

    CrossRef  CAS  PubMed  Google Scholar 

  48. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.

    CrossRef  CAS  PubMed  Google Scholar 

  49. McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.

    CrossRef  CAS  PubMed  Google Scholar 

  50. Hubers SA, Brown NJ. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition. Circulation. 2016;133:1115–24.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cohn JN, Archibald DG, Ziesche S, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med. 1986;314:1547–52.

    CrossRef  CAS  PubMed  Google Scholar 

  52. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325:303–10.

    CrossRef  CAS  PubMed  Google Scholar 

  53. Group DI. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997;336:525–33.

    CrossRef  Google Scholar 

  54. Rathore SS, Wang Y, Krumholz HM. Sex-based differences in the effect of digoxin for the treatment of heart failure. N Engl J Med. 2002;347:1403–11.

    CrossRef  CAS  PubMed  Google Scholar 

  55. Adams KF, Patterson JH, Gattis WA, et al. Relationship of serum digoxin concentration to mortality and morbidity in women in the digitalis investigation group trial: a retrospective analysis. J Am Coll Cardiol. 2005;46:497–504.

    CrossRef  CAS  PubMed  Google Scholar 

  56. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.

    CrossRef  CAS  PubMed  Google Scholar 

  58. Zareba W, Moss AJ, Jackson Hall W, et al. Clinical course and implantable cardioverter defibrillator therapy in postinfarction women with severe left ventricular dysfunction. J Cardiovasc Electrophysiol. 2005;16:1265–70.

    CrossRef  PubMed  Google Scholar 

  59. Bardy GH, Lee KL, Mark DB, et al. Sudden cardiac death-heart failure trial (SCD-HeFT). In: Woosley RL, Singh SN, editors. Ar rhythmia treatment and therapy: evaluation of clinical trial evidence. New York: Marcel Dekker; 2000. p. 323–42.

    Google Scholar 

  60. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877–83.

    CrossRef  PubMed  Google Scholar 

  61. Al-Khatib SM, Hellkamp AS, Hernandez AF, et al. Trends in use of implantable cardioverter-defibrillator therapy among patients hospitalized for heart failure: have the previously observed sex and racial disparities changed over time? Circulation. 2012;125:1094–101.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Arshad A, Moss AJ, Foster E, et al. Cardiac resynchronization therapy is more effective in women than in men: the MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy) trial. J Am Coll Cardiol. 2011;57:813–20.

    CrossRef  PubMed  Google Scholar 

  63. Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49.

    CrossRef  CAS  PubMed  Google Scholar 

  64. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    CrossRef  CAS  PubMed  Google Scholar 

  65. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    CrossRef  CAS  PubMed  Google Scholar 

  66. Bogaev RC, Pamboukian SV, Moore SA, et al. Comparison of outcomes in women versus men using a continuous-flow left ventricular assist device as a bridge to transplantation. J Heart Lung Transplant. 2011;30:515–22.

    CrossRef  PubMed  Google Scholar 

  67. Heatley G, Sood P, Goldstein D, et al. Clinical trial design and rationale of the Multicenter Study of MagLev Technology in Patients Undergoing Mechanical Circulatory Support Therapy With HeartMate 3 (MOMENTUM 3) investigational device exemption clinical study protocol. J Heart Lung Transplant. 2016;35:528–36.

    CrossRef  PubMed  Google Scholar 

  68. Hsich EM, Naftel DC, Myers SL, et al. Should women receive left ventricular assist device support?: findings from INTERMACS. Circ Heart Fail. 2012;5:234–40.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  69. Weymann A, Patil NP, Sabashnikov A, et al. Gender differences in continuous-flow left ventricular assist device therapy as a bridge to transplantation: a risk-adjusted comparison using a propensity score-matching analysis. Artif Organs. 2015;39:212–9.

    CrossRef  CAS  PubMed  Google Scholar 

  70. Stehlik J, Edwards LB, Rowe A, et al. ISHLT international registry for heart and lung transplantation—three decades of scientific contributions. Transplant Rev (Orlando). 2013;27:38–42.

    CrossRef  Google Scholar 

  71. Regitz-Zagrosek V, Petrov G, Lehmkuhl E, et al. Heart transplantation in women with dilated cardiomyopathy. Transplantation. 2010;89:236–44.

    CrossRef  PubMed  Google Scholar 

  72. Shin JJ, Hamad E, Murthy S, Piña IL. Heart failure in women. Clin Cardiol. 2012;35:172–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  73. Stevenson WG, Stevenson LW, Middlekauff HR, et al. Improving survival for patients with advanced heart failure: a study of 737 consecutive patients. J Am Coll Cardiol. 1995;26:1417–23.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Kenchaiah was partly supported by the intramural research program of the National Heart, Lung, and Blood Institute (NHLBI), the National Institutes of Health (NIH), grant number Z99 HL999999, and the Translational Research Institute, grant numbers UL1TR000039 and KL2TR000063 through the NIH National Center for Research Resources and National Center for Advancing Translational Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflicts of Interest: None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kenchaiah M.D., M.P.H., F.A.C.C., F.A.S.E. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Almomani, A., Kenchaiah, S. (2018). Sex-Based Differences in Risk Determinants and Management of Heart Failure. In: Mehta, J., McSweeney, J. (eds) Gender Differences in the Pathogenesis and Management of Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-71135-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71135-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71134-8

  • Online ISBN: 978-3-319-71135-5

  • eBook Packages: MedicineMedicine (R0)