Hypertension in Women

  • Amier AhmadEmail author
  • Suzanne Oparil


Cardiovascular disease remains the most common cause of death in women worldwide, with hypertension being the most common modifiable risk factor for cardiovascular disease in both sexes. Further, obesity plays a critical role in the development and management of hypertension with a disproportionate effect on minority women. Overall, gender specific differences in the pathogenesis and response to treatment of hypertension exist, and must be taken into consideration.


Hypertension Women Cardiovascular disease 


  1. 1.
    Gholizadeh L, Davidson P. More similarities than differences: an international comparison of CVD mortality and risk factors in women. Health Care Women Int. 2008;29(1):3–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(6):441–50.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Ahmad A, Oparil S. Hypertension in women: recent advances and lingering questions. Hypertension. 2017;70(1):19–26.CrossRefPubMedGoogle Scholar
  5. 5.
    Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011-2012. NCHS Data Brief 2013(133):1–8.Google Scholar
  6. 6.
    Yoon SS, Carroll MD, Fryar CD. Hypertension prevalence and control among adults: United States, 2011-2014. NCHS Data Brief 2015(220):1–8.Google Scholar
  7. 7.
    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Collaborators GBDO. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.CrossRefGoogle Scholar
  9. 9.
    An R. Prevalence and trends of adult obesity in the US, 1999-2012. ISRN Obes. 2014;2014:185132.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Hernandez DC, Reesor L, Murillo R. Gender disparities in the food insecurity-overweight and food insecurity-obesity paradox among low-income older adults. J Acad Nutr Diet. 2017;117(7):1087–96.CrossRefPubMedGoogle Scholar
  11. 11.
    Foundation TfAsHaRWJ. The state of obesity. Better policies for a healthier America 2017. Available from:
  12. 12.
    Yancey AK, Cole BL, Brown R, Williams JD, Hillier A, Kline RS, et al. A cross-sectional prevalence study of ethnically targeted and general audience outdoor obesity-related advertising. Milbank Q. 2009;87(1):155–84.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Sampson UK, Edwards TL, Jahangir E, Munro H, Wariboko M, Wassef MG, et al. Factors associated with the prevalence of hypertension in the southeastern United States: insights from 69,211 blacks and whites in the Southern Community Cohort Study. Circ Cardiovasc Qual Outcomes. 2014;7(1):33–54.CrossRefPubMedGoogle Scholar
  14. 14.
    do Carmo JM, da Silva AA, Wang Z, Fang T, Aberdein N, de Lara Rodriguez CE, et al. Obesity-induced hypertension: brain signaling pathways. Curr Hypertens Rep. 2016;18(7):58.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991–1006.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res. 2017;183:57–70.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Schillaci G, Pirro M, Vaudo G, Gemelli F, Marchesi S, Porcellati C, et al. Prognostic value of the metabolic syndrome in essential hypertension. J Am Coll Cardiol. 2004;43(10):1817–22.CrossRefPubMedGoogle Scholar
  19. 19.
    Pucci G, Alcidi R, Tap L, Battista F, Mattace-Raso F, Schillaci G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: a review of the literature. Pharmacol Res. 2017;120:34–42.CrossRefPubMedGoogle Scholar
  20. 20.
    Vishram JK, Borglykke A, Andreasen AH, Jeppesen J, Ibsen H, Jorgensen T, et al. Impact of age and gender on the prevalence and prognostic importance of the metabolic syndrome and its components in Europeans. The MORGAM Prospective Cohort Project. PLoS One. 2014;9(9):e107294.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Dallongeville J, Cottel D, Arveiler D, Tauber JP, Bingham A, Wagner A, et al. The association of metabolic disorders with the metabolic syndrome is different in men and women. Ann Nutr Metab. 2004;48(1):43–50.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Janssen I, Powell LH, Crawford S, Lasley B, Sutton-Tyrrell K. Menopause and the metabolic syndrome: the study of women’s health across the nation. Arch Intern Med. 2008;168(14):1568–75.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Kuk JL, Ardern CI. Age and sex differences in the clustering of metabolic syndrome factors: association with mortality risk. Diabetes Care. 2010;33(11):2457–61.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes. 2008;32(6):949–58.CrossRefGoogle Scholar
  25. 25.
    Chandra A, Neeland IJ, Berry JD, Ayers CR, Rohatgi A, Das SR, et al. The relationship of body mass and fat distribution with incident hypertension: observations from the Dallas Heart Study. J Am Coll Cardiol. 2014;64(10):997–1002.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Chughtai HL, Morgan TM, Rocco M, Stacey B, Brinkley TE, Ding J, et al. Renal sinus fat and poor blood pressure control in middle-aged and elderly individuals at risk for cardiovascular events. Hypertension. 2010;56(5):901–6.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Sugerman H, Windsor A, Bessos M, Wolfe L. Intra-abdominal pressure, sagittal abdominal diameter and obesity comorbidity. J Intern Med. 1997;241(1):71–9.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Foster MC, Hwang SJ, Porter SA, Massaro JM, Hoffmann U, Fox CS. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension. 2011;58(5):784–90.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Hall ME, do Carmo JM, da Silva AA, Juncos LA, Wang Z, Hall JE. Obesity, hypertension, and chronic kidney disease. Int J Nephrol Renovasc Dis. 2014;7:75–88.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Kuznetsova T, Haddad F, Tikhonoff V, Kloch-Badelek M, Ryabikov A, Knez J, et al. Impact and pitfalls of scaling of left ventricular and atrial structure in population-based studies. J Hypertens. 2016;34(6):1186–94.CrossRefPubMedGoogle Scholar
  31. 31.
    Turkbey EB, McClelland RL, Kronmal RA, Burke GL, Bild DE, Tracy RP, et al. The impact of obesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis (MESA). JACC Cardiovasc Imaging. 2010;3(3):266–74.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Chinali M, de Simone G, Roman MJ, Lee ET, Best LG, Howard BV, et al. Impact of obesity on cardiac geometry and function in a population of adolescents: the Strong Heart Study. J Am Coll Cardiol. 2006;47(11):2267–73.CrossRefPubMedGoogle Scholar
  33. 33.
    de Simone G, Palmieri V, Bella JN, Celentano A, Hong Y, Oberman A, et al. Association of left ventricular hypertrophy with metabolic risk factors: the HyperGEN study. J Hypertens. 2002;20(2):323–31.CrossRefPubMedGoogle Scholar
  34. 34.
    De Simone G, Devereux RB, Chinali M, Roman MJ, Barac A, Panza JA, et al. Sex differences in obesity-related changes in left ventricular morphology: the Strong Heart Study. J Hypertens. 2011;29(7):1431–8.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Harlan SM, Rahmouni K. Neuroanatomical determinants of the sympathetic nerve responses evoked by leptin. Clin Auton Res. 2013;23(1):1–7.CrossRefPubMedGoogle Scholar
  36. 36.
    da Silva AA, Hall JE, Moak SP, Browning J, Houghton HJ, Micheloni GC, et al. Role of autonomic nervous system in chronic CNS-mediated antidiabetic action of leptin. Am J Physiol Endocrinol Metab. 2017;312(5):E420–E8.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Mark AL. Selective leptin resistance revisited. Am J Physiol Regul Integr Comp Physiol. 2013;305(6):R566–81.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Xie D, Bollag WB. Obesity, hypertension and aldosterone: is leptin the link? J Endocrinol. 2016;230(1):F7–F11.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Benetou V, Bamia C, Trichopoulos D, Mountokalakis T, Psaltopoulou T, Trichopoulou A. The association of body mass index and waist circumference with blood pressure depends on age and gender: a study of 10,928 non-smoking adults in the Greek EPIC cohort. Eur J Epidemiol. 2004;19(8):803–9.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Chen Y, Rennie DC, Reeder BA. Age-related association between body mass index and blood pressure: the Humboldt Study. Int J Obes Relat Metab Disord. 1995;19(11):825–31.PubMedGoogle Scholar
  41. 41.
    Uhernik AI, Milanovic SM. Anthropometric indices of obesity and hypertension in different age and gender groups of Croatian population. Coll Antropol. 2009;33(Suppl 1):75–80.PubMedGoogle Scholar
  42. 42.
    Wakabayashi I. Relationships of body mass index with blood pressure and serum cholesterol concentrations at different ages. Aging Clin Exp Res. 2004;16(6):461–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Pikilidou MI, Scuteri A, Morrell C, Lakatta EG. The burden of obesity on blood pressure is reduced in older persons: the SardiNIA study. Obesity (Silver Spring). 2013;21(1):E10–3.CrossRefGoogle Scholar
  44. 44.
    Kagan A, Faibel H, Ben-Arie G, Granevitze Z, Rapoport J. Gender differences in ambulatory blood pressure monitoring profile in obese, overweight and normal subjects. J Hum Hypertens. 2007;21(2):128–34.CrossRefPubMedGoogle Scholar
  45. 45.
    Pickering TG, Shimbo D, Haas D. Ambulatory blood-pressure monitoring. N Engl J Med. 2006;354(22):2368–74.CrossRefPubMedGoogle Scholar
  46. 46.
    Franklin SS, Thijs L, Hansen TW, O'Brien E, Staessen JA. White-coat hypertension: new insights from recent studies. Hypertension. 2013;62(6):982–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Hansen TW, Kikuya M, Thijs L, Bjorklund-Bodegard K, Kuznetsova T, Ohkubo T, et al. Prognostic superiority of daytime ambulatory over conventional blood pressure in four populations: a meta-analysis of 7,030 individuals. J Hypertens. 2007;25(8):1554–64.CrossRefPubMedGoogle Scholar
  48. 48.
    Fagard RH, Celis H, Thijs L, Staessen JA, Clement DL, De Buyzere ML, et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008;51(1):55–61.CrossRefPubMedGoogle Scholar
  49. 49.
    Siu AL, Force USPST. Screening for high blood pressure in adults: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2015;163(10):778–86.CrossRefPubMedGoogle Scholar
  50. 50.
    Banegas JR, Segura J, de la Sierra A, Gorostidi M, Rodriguez-Artalejo F, Sobrino J, et al. Gender differences in office and ambulatory control of hypertension. Am J Med. 2008;121(12):1078–84.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Divison-Garrote JA, Ruilope LM, de la Sierra A, de la Cruz JJ, Vinyoles E, Gorostidi M, et al. Magnitude of hypotension based on office and ambulatory blood pressure monitoring: results from a cohort of 5066 treated hypertensive patients aged 80 years and older. J Am Med Dir Assoc. 2017;18(5):452 e1–6.CrossRefGoogle Scholar
  52. 52.
    Divison-Garrote JA, Banegas JR, De la Cruz JJ, Escobar-Cervantes C, De la Sierra A, Gorostidi M, et al. Hypotension based on office and ambulatory monitoring blood pressure. Prevalence and clinical profile among a cohort of 70,997 treated hypertensives. J Am Soc Hypertens. 2016;10(9):714–23.CrossRefPubMedGoogle Scholar
  53. 53.
    O’Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, et al. European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens. 2013;31(9):1731–68.CrossRefPubMedGoogle Scholar
  54. 54.
    Salles GF, Reboldi G, Fagard RH, Cardoso CR, Pierdomenico SD, Verdecchia P, et al. Prognostic effect of the nocturnal blood pressure fall in hypertensive patients: the ambulatory blood pressure collaboration in patients with hypertension (ABC-H) meta-analysis. Hypertension. 2016;67(4):693–700.CrossRefPubMedGoogle Scholar
  55. 55.
    Perez-Lloret S, Toblli JE, Cardinali DP, Milei J. Gender differences in age-related increase of asleep blood pressure. Arch Gerontol Geriatr. 2010;50(3):319–22.CrossRefPubMedGoogle Scholar
  56. 56.
    Franklin SS, Thijs L, Asayama K, Li Y, Hansen TW, Boggia J, et al. The cardiovascular risk of white-coat hypertension. J Am Coll Cardiol. 2016;68(19):2033–43.CrossRefPubMedGoogle Scholar
  57. 57.
    Omboni S, Aristizabal D, De la Sierra A, Dolan E, Head G, Kahan T, et al. Hypertension types defined by clinic and ambulatory blood pressure in 14 143 patients referred to hypertension clinics worldwide. Data from the ARTEMIS study. J Hypertens. 2016;34(11):2187–98.CrossRefPubMedGoogle Scholar
  58. 58.
    Lobo RA. Metabolic syndrome after menopause and the role of hormones. Maturitas. 2008;60(1):10–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Khattar RS, Senior R, Lahiri A. Cardiovascular outcome in white-coat versus sustained mild hypertension: a 10-year follow-up study. Circulation. 1998;98(18):1892–7.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Fagard RH, Staessen JA, Thijs L, Gasowski J, Bulpitt CJ, Clement D, et al. Response to antihypertensive therapy in older patients with sustained and nonsustained systolic hypertension. Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Circulation. 2000;102(10):1139–44.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Pierdomenico SD, Cuccurullo F. Prognostic value of white-coat and masked hypertension diagnosed by ambulatory monitoring in initially untreated subjects: an updated meta analysis. Am J Hypertens. 2011;24(1):52–8.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Mancia G, Bombelli M, Facchetti R, Madotto F, Quarti-Trevano F, Polo Friz H, et al. Long-term risk of sustained hypertension in white-coat or masked hypertension. Hypertension. 2009;54(2):226–32.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Wang YC, Shimbo D, Muntner P, Moran AE, Krakoff LR, Schwartz JE. Prevalence of masked hypertension among US adults with nonelevated clinic blood pressure. Am J Epidemiol. 2017;185(3):194–202.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Peacock J, Diaz KM, Viera AJ, Schwartz JE, Shimbo D. Unmasking masked hypertension: prevalence, clinical implications, diagnosis, correlates and future directions. J Hum Hypertens. 2014;28(9):521–8.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Turnbull F, Woodward M, Neal B, Barzi F, Ninomiya T, Chalmers J, et al. Do men and women respond differently to blood pressure-lowering treatment? Results of prospectively designed overviews of randomized trials. Eur Heart J. 2008;29(21):2669–80.CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Grimm RH Jr, Grandits GA, Prineas RJ, McDonald RH, Lewis CE, Flack JM, et al. Long-term effects on sexual function of five antihypertensive drugs and nutritional hygienic treatment in hypertensive men and women. Treatment of Mild Hypertension Study (TOMHS). Hypertension. 1997;29(1 Pt 1):8–14.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Thomas HN, Evans GW, Berlowitz DR, Chertow GM, Conroy MB, Foy CG, et al. Antihypertensive medications and sexual function in women: baseline data from the SBP intervention trial (SPRINT). J Hypertens. 2016;34(6):1224–31.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Izumi Y, Matsumoto K, Ozawa Y, Kasamaki Y, Shinndo A, Ohta M, et al. Effect of age at menopause on blood pressure in postmenopausal women. Am J Hypertens. 2007;20(10):1045–50.CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Steiner M, Dunn E, Born L. Hormones and mood: from menarche to menopause and beyond. J Affect Disord. 2003;74(1):67–83.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Bonnema RA, McNamara MC, Spencer AL. Contraception choices in women with underlying medical conditions. Am Fam Physician. 2010;82(6):621–8.PubMedGoogle Scholar
  71. 71.
    Bulletins-Gynecology ACoP. ACOG practice bulletin. No. 73: use of hormonal contraception in women with coexisting medical conditions. Obstet Gynecol. 2006;107(6):1453–72.CrossRefGoogle Scholar
  72. 72.
    American College of O, Gynecologists. ACOG Practice Bulletin No. 121: long-acting reversible contraception: Implants and intrauterine devices. Obstet Gynecol. 2011;118(1):184–96.CrossRefGoogle Scholar
  73. 73.
    Committee on Obstetric P. Committee Opinion No. 692: emergent therapy for acute-onset, severe hypertension during pregnancy and the postpartum period. Obstet Gynecol. 2017;129(4):e90–e5.CrossRefGoogle Scholar
  74. 74.
    Bokslag A, Teunissen PW, Franssen C, van Kesteren F, Kamp O, Ganzevoort W, et al. Effect of early-onset preeclampsia on cardiovascular risk in the fifth decade of life. Am J Obstet Gynecol. 2017;216(5):523 e1–7.CrossRefGoogle Scholar
  75. 75.
    Theilen LH, Fraser A, Hollingshaus MS, Schliep KC, Varner MW, Smith KR, et al. All-cause and cause-specific mortality after hypertensive disease of pregnancy. Obstet Gynecol. 2016;128(2):238–44.CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Magee LA, Cham C, Waterman EJ, Ohlsson A, von Dadelszen P. Hydralazine for treatment of severe hypertension in pregnancy: meta-analysis. BMJ. 2003;327(7421):955–60.CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Magee LA, Group CS, von Dadelszen P, Singer J, Lee T, Rey E, et al. Do labetalol and methyldopa have different effects on pregnancy outcome? Analysis of data from the Control of Hypertension In Pregnancy Study (CHIPS) trial. BJOG. 2016;123(7):1143–51.CrossRefPubMedGoogle Scholar
  78. 78.
    Peacock WFT, Hilleman DE, Levy PD, Rhoney DH, Varon J. A systematic review of nicardipine vs labetalol for the management of hypertensive crises. Am J Emerg Med. 2012;30(6):981–93.CrossRefPubMedGoogle Scholar
  79. 79.
    Rothberger S, Carr D, Brateng D, Hebert M, Easterling TR. Pharmacodynamics of clonidine therapy in pregnancy: a heterogeneous maternal response impacts fetal growth. Am J Hypertens. 2010;23(11):1234–40.CrossRefPubMedGoogle Scholar
  80. 80.
    Abalos E, Duley L, Steyn DW. Antihypertensive drug therapy for mild to moderate hypertension during pregnancy. Cochrane Database Syst Rev. 2014;2:CD002252.Google Scholar
  81. 81.
    Magee LA, von Dadelszen P, Rey E, Ross S, Asztalos E, Murphy KE, et al. Less-tight versus tight control of hypertension in pregnancy. N Engl J Med. 2015;372(5):407–17.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Tinsley Harrison Internal Medicine Training ProgramUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Vascular Biology and Hypertension Program, Division of Cardiovascular DiseaseUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations