Advertisement

Alternative Group Action in Topos Quantum Theory

  • Cecilia Flori
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 944)

Abstract

In this Chapter we will explain an alternative way of describing group actions in topos quantum theory. The definition of group and group action in topos quantum theory was first introduced in [27]. Later, an alternative definition was put forward in [13]. In the following chapter we will explain this new definition which rests on the idea of flows in the spectral presheaf .

References

  1. 13.
    A. Doering, Flows on generalised Gelfand spectra of non-abelian unital C*-algebras and time evolution of quantum systems (2012). arXiv:1212.4882 [math.OA]Google Scholar
  2. 14.
    A. Doering, Generalised Gelfand spectra of nonabelian unital C*-algebras (2012). arXiv:1212.2613 [math.OA]Google Scholar
  3. 25.
    H.A. Dye, On the geometry of projections in certain operator algebras. Ann. Math. 61(1), 73–89 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 26.
    C. Flori, A First Course in Topos Quantum Theory. Lecture Notes in Physics, vol. 868 (Springer, Heidelberg, 2013)Google Scholar
  5. 27.
    C. Flori, Group action in topos quantum physics. J. Math. Phys. 54, 3 (2013). arXiv:1110.1650 [quant-ph]Google Scholar
  6. 36.
    J. Hamhalter, Quantum Measure Theory. Fundamental Theories of Physics, vol. 134 (Kluwer, Dordrecht, 2003)Google Scholar
  7. 41.
    C. Heunen, M.L. Reyes, Active lattices determine AW-algebras. J. Math. Anal. Appl. 416(1), 289–313 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 50.
    P.T. Johnstone, Sketches of an Elephant A Topos Theory Compendium I, II (Oxford Science Publications, Oxford, 2002)zbMATHGoogle Scholar
  9. 51.
    S. Kochen, E. Specker, The problem of hidden variables in quantum mechanics. J. Math. Mech. 17(1), 59–87 (1967)MathSciNetzbMATHGoogle Scholar
  10. 55.
    S. MacLane, I. Moerdijk, Sheaves in Geometry and Logic: A First Introduction to Topos Theory (Springer, London, 1968)Google Scholar
  11. 59.
    nLab, Stuff, structure, property (2014). http://ncatlab.org/nlab/revision/stuff,+structure,+property/38
  12. 72.
    B. van den Berg, C. Heunen, Noncommutativity as a colimit. Appl. Categ. Struct. 20(4), 393–414 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 73.
    S. Vickers, Topology via Logic (Cambridge University Press, New York, 1989)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Cecilia Flori
    • 1
  1. 1.Computing and Mathematical SciencesThe Waikato UniversityHamiltonNew Zealand

Personalised recommendations