Skip to main content

Linear fracture mechanics

  • Chapter
  • First Online:
Fracture Mechanics

Part of the book series: Mechanical Engineering Series ((MES))

  • 2541 Accesses

Abstract

We now turn to the description of the crack behavior. From a macroscopic, continuum mechanical viewpoint, we consider a crack as a cut in a body. Its opposite boundaries are the crack surfaces which are also called crack faces or crack flanks (Fig. 4.1). In general they are traction-free. The crack ends at the crack front or crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aliabadi, M.H. and Rooke, D.P., Numerical Fracture Mechanics. Kluwer Acad. Publ., 1991

    Google Scholar 

  • Anderson, T.L. Fracture Mechanics; Fundamentals and Application. CRC Press, Boca Raton, 2004

    Google Scholar 

  • Bazant, Z.P. and Planas, J. Fracture and Size Effects in Concrete and Other Quasibrittle Materials. CRC Press, Boca Raton, 1997

    Google Scholar 

  • Broberg, K.B. Cracks and Fracture. Academic Press, London, 1999

    Google Scholar 

  • Brocks, W. Plasticity and Fracture. Springer, Berlin, 2017

    Google Scholar 

  • Broek, D. Elementary Engineering Fracture Mechanics. Nijhoff, The Hague, 1982

    Google Scholar 

  • Broek, D. The Practical Use of Fracture Mechanics. Kluwer, Dordrecht, 1988

    Google Scholar 

  • Cherepanov, G.P. Mechanics of Brittle Fracture. McGraw-Hill, New York, 1979

    Google Scholar 

  • Cotterell, B. and Mai, Y.-W. Fracture Mechanics of Cementitious Materials. Blackie Academic & Professional, 1996

    Google Scholar 

  • Cruse, T.A., Boundary Element Analysis in Computational Fracture Mechanics. Kluwer Acad. Publ., 1998

    Google Scholar 

  • Dineva, P.S., Gross, D., M¨uller, R. and Rangelov, T., Dynamic Fracture of Piezoelectric Materials. Springer, Berlin, 2014

    Google Scholar 

  • Gdoutos, E.E. Fracture Mechanics – An Introduction. Kluwer, Dordrecht, 1993

    Google Scholar 

  • Govorukha, V., Kamlah, M., Loboda, V. and Lapusta, Y., Fracture Mechanics of Piezoelectric Solids with Interface Cracks. Springer, Berlin, 2017

    Google Scholar 

  • Hellan, K. Introduction to Fracture Mechanics. McGraw-Hill, New York, 1985

    Google Scholar 

  • Janssen, M., Zuidema, J. andWanhill, R.J.H., Fracture Mechanics. DUP Blue Print, Delft 2002

    Google Scholar 

  • Kachanov, M.L., Shafiro, B. and Tsukrov, I. Handbook of elasticity solutions. Springer, Berlin, 2003

    Google Scholar 

  • Kachanov, M.L. Elastic Solids with Many Cracks and Related Problems. In Advances in Applied Mechanics, Vol. 30, pp. 259-445, Academic Press, 1993

    Google Scholar 

  • Kanninen, M.F. and Popelar, C.H. Advanced Fracture Mechanics. Clarendon Press, Oxford, 1985

    Google Scholar 

  • Knott, J.F. Fundamentals of Fracture Mechanics. Butterworth, London, 1973

    Google Scholar 

  • Kuna, M. Finite Elements in Fracture Mechanics. Springer Netherlands, 2013

    Google Scholar 

  • Lawn, B., Fracture of Brittle Solids. Cambridge University Press, 1993

    Google Scholar 

  • Lekhnitzkii, S.G., Anisotropic Plates. Gordon and Breach, New York, 1968

    Google Scholar 

  • Liebowitz, H. (ed.) Fracture – A Treatise, Vol. 2, Chapter 1-3. Academic Press, London, 1973

    Google Scholar 

  • Miannay, D.P. Fracture Mechanics. Springer, New York, 1998

    Google Scholar 

  • Murakami, Y. Stress Intensity Factors Handbook. Pergamon Press, New York, 1987

    Google Scholar 

  • Pikley,W.D. Peterson’s Stress Concentration Factors. John Wiley, New York, 1997

    Google Scholar 

  • Qin, Q.-H. Fracture Mechanics in Piezoelectric Materials. WIT Press, Southampton, 2001

    Google Scholar 

  • Savin, G.N., Stress Concentration around Holes. Pergamon Press, Oxford, 1961

    Google Scholar 

  • Sih, G.C. (ed.) Mechanics of Fracture, Vol. 2, Noordhoff, Leyden, 1975

    Google Scholar 

  • Suresh, S. Fatigue of Materials. Cambridge University Press, Cambridge, 1998

    Google Scholar 

  • Tada, H., Paris, P. and Irwin, G. The Stress Analysis of Cracks Handbook. Del. Research Corp., St. Louis, 1985

    Google Scholar 

  • Weertmann, J. Dislocation Based Fracture Mechanics. World Scientific, Singapore, 1998

    Google Scholar 

  • Zehnder, A.T., Fracture Mechanics. Springer, Berlin, 2012

    Google Scholar 

  • Zhang, Ch. and Gross, D., On Wave Propagation in Elastic Solids with Cracks. WIT Press, Southampton, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Gross .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gross, D., Seelig, T. (2018). Linear fracture mechanics. In: Fracture Mechanics. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-71090-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71090-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71089-1

  • Online ISBN: 978-3-319-71090-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics