Skip to main content

Capturing the Dynamics of Cellular Automata, for the Generation of Synthetic Persian Music, Using Conditional Restricted Boltzmann Machines

  • Conference paper
  • First Online:
Artificial Intelligence XXXIV (SGAI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10630))

  • 1631 Accesses

Abstract

In this paper the generative and feature extracting powers of the family of Boltzmann Machines are employed in an algorithmic music composition system. Liquid Persian Music (LPM) system is an audio generator using cellular automata progressions as a creative core source. LPM provides an infrastructure for creating novel Dastgāh-like Persian music. Pattern matching rules extract features from the cellular automata sequences and populate the parameters of a Persian musical instrument synthesizer [1]. Applying restricted Boltzmann machines, and conditional restricted Boltzmann machines as two family members of Boltzmann machines provide new ways for interpreting the patterns emanating from the cellular automata. Conditional restricted Boltzmann machines are particularly employed for capturing the dynamics of cellular automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arshi, S.: An implementation of Santur musical instrument and the synthesis of music pieces using learning machines. Master thesis (2012)

    Google Scholar 

  2. Farhat, H.: The Dastgah Concept in Persian Music. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  3. Arshi, S., Davis, D.N.: Generating synthetic Persian music. In: Chapter one in Third International Conference on New Music Concepts, ICNMC 2016, pp. 11–43. ABEditore s.r.1, Academia Musicale, Milano (2016)

    Google Scholar 

  4. Arshi, S., Davis, D.N.: A computational framework for aesthetical navigation in musical search space. In: AISB Symposium on Computational Creativity, Sheffield, UK (2016)

    Google Scholar 

  5. Boden, M.: Computer models of creativity. Psychologist 13, 72–76 (2000)

    Google Scholar 

  6. Boden, M.: Computer models of creativity. Artif. Intell. Mag. 30, 23–34 (2009)

    Google Scholar 

  7. Fernández, J.D., Vico, F.: AI methods in algorithmic composition: a comprehensive survey. J. Artif. Intell. Res. 48, 513–582 (2013)

    MathSciNet  Google Scholar 

  8. Davis, D.N.: Computer and Artificial Music: Liquid Persian Music. http://www2.dcs.hull.ac.uk/NEAT/dnd/music/lpm.html

  9. Turner, C.: Liquid Brain Music (2008)

    Google Scholar 

  10. Woods: Liquid Brain Music: Phase II. http://www2.dcs.hull.ac.uk/NEAT/dnd/. Computer Science, University of Hull (2009)

  11. Arshi, S., Davis, D.N.: Towards a fitness function for musicality using LPM. In: 6th York Doctoral Symposium on Computer Science and Electronics (2015)

    Google Scholar 

  12. Manaris, B., Sessions, V., Wilkinson, J.: Searching for Beauty in Music. vol. 1, pp. 1–10 (2001)

    Google Scholar 

  13. Arshi, S.: Liquid Persian Music Survey. https://www.surveymonkey.co.uk/r/QPQ77JB

  14. Burks, A.W.: Von Neumann’s Self-Reproducing Automata (1970)

    Google Scholar 

  15. Burks, A.: Essays on Cellular Automata. University of Illinois Press, Champaign (1970)

    MATH  Google Scholar 

  16. Wolfram, S.: A New Kind of Science. Wolfram media Champaign, Champaign (2002)

    MATH  Google Scholar 

  17. Wuensche, A.: Discrete dynamics lab: tools for investigating cellular automata and discrete dynamical networks. Artif. Life Model. Softw. pp. 215–258 (2009). (2nd edn.)

    Google Scholar 

  18. Li, W., Packard, N.: The structure of the elementary cellular automata rule space. Complex Syst. 4, 281–297 (1990)

    MathSciNet  MATH  Google Scholar 

  19. Hoffmann, P.: Towards an automated art: algorithmic process in Xenakis’ composition. Contemp. Music Rev. 21, 121–131 (2002)

    Article  Google Scholar 

  20. Miranda, E.R.: Cellular automata music: from sound synthesis to musical forms. Evol. Comput. Music. 8, 170–193 (2007)

    Article  Google Scholar 

  21. Burraston, D., Edmonds, E., Livingstone, D., Miranda, E.R.: Cellular automata in MIDI based computer music. In: Proceedings of International Computer Music Conference, vol. 4, pp. 71–78 (2004)

    Google Scholar 

  22. Miranda, E.R.: Evolving cellular automata music: from sound synthesis to composition. In: Proceedings of Workshop on Artificial Life Models for Musical Applications, vol. 12 (2001)

    Google Scholar 

  23. Miranda, E.R.: Sounds of artificial life. In: Proceedings of the 4th Conference on Creativity and Cognition, pp. 173–177. ACM (2002)

    Google Scholar 

  24. Wuensche, A.: Basins of attraction in network dynamics: a conceptual framework for biomolecular networks. Modul. Dev. Evol. pp. 288–314 (2004)

    Google Scholar 

  25. Wuensche, A.: Classifying cellular automata automatically. Complexity 4, 1–26 (1999)

    Article  MathSciNet  Google Scholar 

  26. Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata. Addison-Wesley, Boston (1992)

    MATH  Google Scholar 

  27. Ackley, D., Hinton, G., Sejnowski, T.: A learning algorithm for boltzmann machines. Cogn. Sci. 9, 147–169 (1985)

    Article  Google Scholar 

  28. Hinton, G.E.: Boltzmann Machines. Tutorial. pp. 1–7 (2007)

    Google Scholar 

  29. Carreira-Perpiñán, M.Á., Hinton, G.E.: On contrastive divergence learning. In: Proceedings of Artificial Intelligence and Statistics (2005)

    Google Scholar 

  30. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Rumelhart, D.E., Mcclelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations, pp. 194–281. MIT Press, Cambridge (1986)

    Google Scholar 

  31. Larochelle, H., Bengio, Y.: Classification using discriminative restricted Boltzmann machines. In: ICML, pp. 536–543 (2008)

    Google Scholar 

  32. Gehler, P.V., Holub, A.D., Welling, M.: The rate adapting poisson model for information retrieval and object recognition. In: Proceedigs 23rd International Conference on Machine Learning. – ICML 2006, pp. 337–344 (2006)

    Google Scholar 

  33. Salakhutdinov, R., Hinton, G.: Replicated softmax: an undirected topic model. In: Proceedings of 2009 Conference on Advances in Neural Information Processing Systems, vol. 22, pp. 1607–1614 (2009)

    Google Scholar 

  34. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep Boltzmann machines. Neural Comput. 24, 1967–2006 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hinton, G.E., Salakhutdinov, R.R.: Reducing the Dimensionality of Data with Neural Networks. Science (80-) 313, 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lauly, S.: Music generation using Dynamically Linked Boltzmann Machines, pp. 1–8 (2007)

    Google Scholar 

  37. Mnih, V., Larochelle, H., Hinton, G.: Conditional restricted Boltzmann machines for structured output prediction. In: UAI, pp. 514–522 (2011)

    Google Scholar 

  38. Hinton, G., Sejnowski, T.J.: Optimal perceptual inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, D.C. (1983)

    Google Scholar 

  39. Hinton, G.: A practical guide to training restricted Boltzmann machines. Comput. (Long. Beach. Calif) 9, 1 (2010)

    Google Scholar 

  40. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002)

    Article  MATH  Google Scholar 

  41. Taylor, G.W., Hinton, G.E.: Factored conditional restricted Boltzmann Machines for modeling motion style. In: Proceedings of 26th Annual International Conference on Machine Learning, ICML 2009, pp. 1025–1032 (2009)

    Google Scholar 

  42. Taylor, G.W.: School: learning representations of sequences with applications to motion capture and video analysis. In: CVPR (2012)

    Google Scholar 

  43. Mandel, M., Pascanu, R., Larochelle, H., Bengio, Y.: Autotagging music with conditional restricted Boltzmann machines (2011)

    Google Scholar 

  44. Mandel, M., Eck, D., Bengio, Y.: Learning tags that vary within a song. In: Proceedings of 11th International Conference on Music Information Retrieval, pp. 399–404 (2010)

    Google Scholar 

  45. Loeckx, A.J., Bultheel, J.: Forward conditional restricted Boltzmann machines for the generation of music. In: 17th International Conference on Computational Creativity, ICCC 2015, Zurich, Switzerland (2015)

    Google Scholar 

  46. Richards, I.A.: Principles of Literary Criticism (Routledge Classics). Routledge, Abingdon (1924)

    Book  Google Scholar 

  47. Wulff, N.H., Hertz, J.A.: Learning Cellular Automation Dynamics with Neural Networks. In: Advances in Neural Information Processing Systems, vol. 5, pp. 631–638 (1993)

    Google Scholar 

  48. Tanaka, M.: Deep Neural Network, Mathworks, Matlab. https://uk.mathworks.com/matlabcentral/fileexchange/42853-deep-neural-network

  49. Salakhutdinov, R.R.: Learning deep Boltzmann machines software. http://www.cs.toronto.edu/~rsalakhu/code.html

  50. Taylor, G.W.: Matlab implementation of implicit mixtures of conditional restricted Boltzmann machines. https://github.com/gwtaylor/imCRBM

  51. Kauffman, S.: Homeostasis and differentiation in random generic control networks. Nature 224, 177–178 (1969)

    Article  Google Scholar 

  52. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Arshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arshi, S., Davis, D.N. (2017). Capturing the Dynamics of Cellular Automata, for the Generation of Synthetic Persian Music, Using Conditional Restricted Boltzmann Machines. In: Bramer, M., Petridis, M. (eds) Artificial Intelligence XXXIV. SGAI 2017. Lecture Notes in Computer Science(), vol 10630. Springer, Cham. https://doi.org/10.1007/978-3-319-71078-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71078-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71077-8

  • Online ISBN: 978-3-319-71078-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics