Skip to main content

Time-Space Complexity Advantages for Quantum Computing

  • Conference paper
  • First Online:
  • 802 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10687))

Abstract

It has been proved that quantum computing has advantages in query complexity, communication complexity and also other computing models. However, it is hard to prove strictly that quantum computing has advantage in the Turing machine models in time complexity. For example, we do not know how to prove that Shor’s algorithm is strictly better than any classical algorithm, since we do not know the lower bound of time complexity of the factoring problem in Turing machine. In this paper, we consider the time-space complexity and prove strictly that quantum computing has advantages compared to their classical counterparts. We prove: (1) a time-space upper bound for recognition of the languages \(L_{INT}(n)\) on two-way finite automata with quantum and classical states (2QCFA): \(TS=\mathbf{O}(n^{3/2}\log n)\), whereas a lower bound on probabilistic Turing machine is \(TS=\mathbf{\Omega }(n^2)\); (2) a time-space upper bound for recognition of the languages \(L_{NE}(n)\) on exact 2QCFA: \(TS=\mathbf{O}(n^{1.87} \log n)\), whereas a lower bound on probabilistic Turing machine is \(TS=\mathbf{\Omega }(n^2)\).

It has been proved (Klauck, STOC’00) that the exact one-way quantum finite automata have no advantage comparing to classical finite automata in recognizing languages. However, the result (2) shows that the exact 2QCFA do have an advantage in comparison with their classical counterparts, which is the first example showing that the exact quantum computing has advantage in time-space complexity comparing to classical computing.

This work was supported by the National Natural Science Foundation of China (Nos. 61572532, 61272058, 61602532), the Fundamental Research Funds for the Central Universities of China (Nos. 17lgjc24, 161gpy43, 17lgzd29) and the National Natural Science Foundation of Guangdong Province of China (Nos. 2017B030311011, 2017A030313378) and Qiu is partially funded by FCT project UID/EEA/50008/2013.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: Proceedings of the 44th FOCS, pp. 200–209 (2003)

    Google Scholar 

  2. Aaronson, S., Ben-David, S., Kothari, R.: Separations in query complexity using cheat sheets. In: Proceedings of the 48th STOC, pp. 863–876 (2016)

    Google Scholar 

  3. Ambainis, A., Freivalds, R.: One-way quantum finite automata: strengths, weaknesses and generalizations. In: Proceedings of the 39th FOCS, pp. 332–341 (1998)

    Google Scholar 

  4. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. TCS 287, 299–311 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and quantum finite automata. J. ACM 49, 496–511 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambainis, A.: Superlinear advantage for exact quantum algorithms. In: Proceedings of the 45th STOC, pp. 891–900 (2013)

    Google Scholar 

  7. Ambainis, A., Balodis, K., Belovs, A., Lee, T., Santha, M., Smotrovs, J.: Separations in query complexity based on pointer functions. In: Proceedings of the 48th STOC, pp. 800–813 (2016)

    Google Scholar 

  8. Ambainis, A., Kokainis, M., Kothari, R.: Nearly optimal separations between communication (or query) complexity and partitions. In: Proceedings of the 31st CCC, pp. 4:1–4:14 (2016)

    Google Scholar 

  9. Borodin, A., Cook, S.: A time-space tradeoff for sorting on a general sequential model of computation. SIAM J. Comput. 11, 287–297 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. JCSS 45, 204–232 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: Proceedings of the 30th STOC, pp. 63–68 (1998)

    Google Scholar 

  12. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a survey. TCS 288, 21–43 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Freivalds, R.: Probabilistic two-way machines. In: Gruska, J., Chytil, M. (eds.) MFCS 1981. LNCS, vol. 118, pp. 33–45. Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-10856-4_72

    Chapter  Google Scholar 

  14. Goos, M., Pitassi, T., Watson, T.: Deterministic communication vs. partition number. In: Proceedings of the 56th FOCS, pp. 1077–1088 (2015)

    Google Scholar 

  15. Goos, M., Pitassi, T., Watson, T.: Randomized communication vs. partition number. In: Proceedings of the 44th ICALP, pp. 52:1–52:15 (2017)

    Google Scholar 

  16. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th STOC, pp. 212–219 (1996)

    Google Scholar 

  17. Gruska, J., Qiu, D.W., Zheng, S.G.: Generalizations of the distributed Deutsch-Jozsa promise problem. Math. Struct. Comput. Sci. 27, 311–331 (2017). arXiv:1402.7254

    Article  MathSciNet  MATH  Google Scholar 

  18. Hromkovič, J.: Design and Analysis of Randomized Algorithms. Springer, Cham (2005). https://doi.org/10.1007/3-540-27903-2

    Book  MATH  Google Scholar 

  19. Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way protocols. In: Proceedings of the 32th STOC, pp. 644–651 (2000)

    Google Scholar 

  20. Klauck, H.: Quantum time-space tradeoffs for sorting. In: Proceedings of the 35th STOC, pp. 69–76 (2003)

    Google Scholar 

  21. Klauck, H., Špalek, R., de Wolf, R.: Quantum and classical strong direct product theorems and optimal time-space tradeoffs. SIAM J. Comput. 36, 1472–1493 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  23. Li, L.Z., Feng, Y.: On hybrid models of quantum finite automata. J. Comput. Syst. Sci. 81, 1144–1158 (2015). arXiv:1206.2131

    Article  MathSciNet  MATH  Google Scholar 

  24. Qiu, D.W., Li, L.Z., Mateus, P., Gruska, J.: Quantum finite automata. In: Wang, J. (ed.) Handbook on Finite State Based Models and Applications, pp. 113–141. CRC Press, Boca Raton (2012)

    Chapter  Google Scholar 

  25. Razborov, A.: On the distributional complexity of disjointness. TCS 106, 385–390 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yao, A.C.: Some complexity questions related to distributed computing. In: Proceedings of 11th STOC, pp. 209–213 (1979)

    Google Scholar 

  27. Yakaryılmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum finite automata. Discrete Math. Theor. Comput. Sci. 12, 19–40 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Zheng, S., Qiu, D., Li, L., Gruska, J.: One-way finite automata with quantum and classical states. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 273–290. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31644-9_19

    Chapter  Google Scholar 

  29. Zheng, S.G., Gruska, J., Qiu, D.W.: On the state complexity of semi-quantum finite automata. RAIRO-Theor. Inform. Appl. 48, 187–207 (2014). Earlier version in LATA 2014. arXiv:1307.2499

    Article  MathSciNet  MATH  Google Scholar 

  30. Zheng, S., Qiu, D.: From quantum query complexity to state complexity. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808, pp. 231–245. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13350-8_18

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are thankful to anonymous referees for their comments and suggestions that greatly help to improve the quality of the manuscript. Zheng would like to thanks A. Ambainis for his suggestion and hospitality in Riga, C. Mereghetti and B. Palano for their discussions and hospitality in Milan, L. Li for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daowen Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, S., Qiu, D., Gruska, J. (2017). Time-Space Complexity Advantages for Quantum Computing. In: Martín-Vide, C., Neruda, R., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2017. Lecture Notes in Computer Science(), vol 10687. Springer, Cham. https://doi.org/10.1007/978-3-319-71069-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71069-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71068-6

  • Online ISBN: 978-3-319-71069-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics