Skip to main content

Topological Classification of RNA Structures via Intersection Graph

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10687))

Abstract

We introduce a new algebraic representation of RNA secondary structures as a composition of hairpins, considered as basic loops. Starting from it, we define an abstract algebraic representation and we propose a novel methodology to classify RNA structures based on two topological invariants, the genus and the crossing number. It takes advantage of the abstract representation to easily obtain two intersection graphs: one of the RNA molecule and another one of the relative shape. The edges cardinality of the former corresponds to the number of interactions among hairpins, whereas the edges cardinality of the latter is the crossing number of the shape associated to the molecule. The aforementioned crossing number together with the genus permits to define a more precise energy function than the standard one which is based on the genus only. Our methodology is validated over a subset of RNA structures extracted from Pseudobase++ database, and we classify them according to the two topological invariants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams, P.L., Stahley, M.R., Gill, M.L., Kosen, A.B., Wang, J., Strobel, S.A.: Crystal structure of a group I intron splicing intermediate. RNA 10(12), 1867–1887 (2004)

    Article  Google Scholar 

  2. Bellaousov, S., Mathews, D.H.: Probknot: fast prediction of RNA secondary structure including pseudoknots. RNA 16(10), 1870–1880 (2010)

    Article  Google Scholar 

  3. Berman, H., Henrick, K., Nakamura, H.: Announcing the worldwide protein data bank. Nature Struct. Mol. Biol. 10(12), 980–980 (2003)

    Article  Google Scholar 

  4. Bon, M., Vernizzi, G., Orland, H., Zee, A.: Topological classification of RNA structures. J. Mol. Biol. 379(4), 900–911 (2008)

    Article  Google Scholar 

  5. Elliott, D., Ladomery, M.: Molecular Biology of RNA. Oxford University Press, Oxford (2017)

    Google Scholar 

  6. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley Longman Publishing Co., Inc., Boston (1978)

    MATH  Google Scholar 

  7. Huang, F.W., Reidys, C.M.: Topological language for RNA. Math. Biosci. 282, 109–120 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lyngsø, R.B., Pedersen, C.N.: RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 7(3–4), 409–427 (2000)

    Article  Google Scholar 

  9. Mans, R.M., Pleij, C.W., Bosch, L.: tRNA-like structures. structure, function and evolutionary significance. Eur. J. Biochem. 201(1), 303–324 (1991)

    Article  Google Scholar 

  10. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  11. Metzler, D., Nebel, M.E.: Predicting RNA secondary structures with pseudoknots by MCMC sampling. J. Math. Biol. 56(1), 161–181 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Munkres, J.R.: Analysis on Manifolds. Westview Press, USA (1997)

    MATH  Google Scholar 

  13. Rastogi, T., Beattie, T.L., Olive, J.E., Collins, R.A.: A long-range pseudoknot is required for activity of the Neurospora VS ribozyme. EMBO J. 15(11), 2820 (1996)

    Google Scholar 

  14. Reidys, C.M., Huang, F.W., Andersen, J.E., Penner, R.C., Stadler, P.F., Nebel, M.E.: Topology and prediction of RNA pseudoknots. Bioinformatics 27(8), 1076–1085 (2011)

    Article  Google Scholar 

  15. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoret. Comput. Sci. 88(2), 191–229 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Taufer, M., Licon, A., Araiza, R., Mireles, D., Van Batenburg, F., Gultyaev, A.P., Leung, M.Y.: Pseudobase++: an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots. Nucleic Acids Res. 37(suppl. 1), D127–D135 (2008)

    Google Scholar 

  17. Theimer, C.A., Blois, C.A., Feigon, J.: Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell 17(5), 671–682 (2005)

    Article  Google Scholar 

  18. Vernizzi, G., Orland, H., Zee, A.: Classification and predictions of RNA pseudoknots based on topological invariants. Phys. Rev. E 94(4), 042410 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Quadrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quadrini, M., Culmone, R., Merelli, E. (2017). Topological Classification of RNA Structures via Intersection Graph. In: Martín-Vide, C., Neruda, R., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2017. Lecture Notes in Computer Science(), vol 10687. Springer, Cham. https://doi.org/10.1007/978-3-319-71069-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71069-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71068-6

  • Online ISBN: 978-3-319-71069-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics