Skip to main content

Robust Combinatorial Circuits in Chemical Reaction Networks

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10687))

Included in the following conference series:

  • 716 Accesses

Abstract

We introduce a general method for compiling any combinatorial circuit into an input/output chemical reaction network (I/O CRN). An I/O CRN receives a robust input signal over time, processes it catalytically to produce an output signal, and operates under deterministic mass action semantics (mass action kinetics). Our construction is reusable in the sense that it continues to operate correctly under changing input signals, and we prove that the construction is robust with respect to perturbations in (1) input signals; (2) initial concentrations; (3) rate constants; and (4) output measurements.

This work is supported by National Science Foundation grants 1247051 and 1545028.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aris, R.: Prolegomena to the rational analysis of systems of chemical reactions. Arch. Ration. Mech. Anal. 19(2), 81–99 (1965)

    Article  MathSciNet  Google Scholar 

  2. Boemo, M.A., Lucas, A.E., Turberfield, A.J., Cardelli, L.: The formal language and design principles of autonomous DNA walker circuits. ACS Synth. Biol. 5(8), 878–884 (2016)

    Article  Google Scholar 

  3. Boruah, K., Dutta, J.C.: Development of a DNA computing model for Boolean circuit. In: Proceedings of the 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, pp. 301–304, February 2016

    Google Scholar 

  4. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23(2), 247–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)

    Article  Google Scholar 

  6. Dannenberg, F., Kwiatkowska, M., Thachuk, C., Turberfield, A.J.: DNA walker circuits: computational potential, design, and verification. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 31–45. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-01928-4_3

    Chapter  Google Scholar 

  7. Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070), 831–834 (2012)

    Article  Google Scholar 

  8. Ellis, S.J., Henderson, E.R., Klinge, T.H., Lathrop, J.I., Lutz, J.H., Lutz, R.R., Mathur, D., Miner, A.S.: Automated requirements analysis for a molecular watchdog timer. In: Proceedings of the 29th International Conference on Automated Software Engineering, pp. 767–778. ACM (2014)

    Google Scholar 

  9. Ge, L., Zhong, Z., Wen, D., You, X., Zhang, C.: A formal combinational logic synthesis with chemical reaction networks. IEEE Trans. Mol. Biol. Multi-Scale Commun. 3(1), 33–47 (2017)

    Article  Google Scholar 

  10. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural networks and Turing machines. Proc. Natl. Acad. Sci. 88(24), 10983–10987 (1991)

    Article  MATH  Google Scholar 

  11. Klinge, T.H.: Robust and modular computation with chemical reaction networks. Ph.D. thesis, Iowa State University (2016)

    Google Scholar 

  12. Klinge, T.H.: Robust signal restoration in chemical reaction networks. In: Proceedings of the 3rd International Conference on Nanoscale Computing and Communication, pp. 6:1–6:6. ACM (2016)

    Google Scholar 

  13. Klinge, T.H., Lathrop, J.I., Lutz, J.H.: Robust biomolecular finite automata. Technical report 1505.03931, arXiv.org e-Print archive (2015)

  14. Klinge, T.H., Lathrop, J.I., Lutz, J.H.: (2016), Work initially introduced in [11] and will appear in a forthcoming extension of [13]

    Google Scholar 

  15. Lutz, R.R., Lutz, J.H., Lathrop, J.I., Klinge, T.H., Mathur, D., Stull, D.M., Bergquist, T.G., Henderson, E.R.: Requirements analysis for a product family of DNA nanodevices. In: Proceedings of the 20th International Conference on Requirements Engineering, pp. 211–220. IEEE (2012)

    Google Scholar 

  16. Ogihara, M., Ray, A.: Simulating Boolean circuits on a DNA computer. In: Proceedings of the First Annual International Conference on Computational Molecular Biology, RECOMB 1997, pp. 226–231. ACM, New York (1997)

    Google Scholar 

  17. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  18. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  20. Song, X., Eshra, A., Dwyer, C., Reif, J.: Renewable DNA seesaw logic circuits enabled by photoregulation of toehold-mediated strand displacement. RSC Adv. 7, 28130–28144 (2017)

    Article  Google Scholar 

  21. Thubagere, A.J., Thachuk, C., Berleant, J., Johnson, R.F., Ardelean, D.A., Cherry, K.M., Qian, L.: Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Nat. Commun. 8 (2017). article number 14373

    Google Scholar 

Download references

Acknowledgments

We thank Jack Lutz and the Laboratory of Molecular Programming at Iowa State University for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus H. Klinge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ellis, S.J., Klinge, T.H., Lathrop, J.I. (2017). Robust Combinatorial Circuits in Chemical Reaction Networks. In: Martín-Vide, C., Neruda, R., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2017. Lecture Notes in Computer Science(), vol 10687. Springer, Cham. https://doi.org/10.1007/978-3-319-71069-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71069-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71068-6

  • Online ISBN: 978-3-319-71069-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics