Skip to main content

Unraveling Brain Modularity Through Slow Oscillations

  • Chapter
  • First Online:
Nonlinear Dynamics in Computational Neuroscience

Part of the book series: PoliTO Springer Series ((PTSS))

Abstract

The intricate web of connections among the neurons composing the cerebral cortex is the seed of the complexity that our brain is capable to express. Such complexity is organized as it results from a hierarchical and modular organization of the network in which the roles of different cortical areas are distinct. Here, we speculate that such differentiation can be obtained by relying on the granular nature of the cortical surface tiled with ‘canonic’ modules which in turn can be flexibly tuned to compose diverse mesoscopic networks. The remarkable versatility of these cortical modules is governed by few key parameters like the excitability level and the sensitivity to the accumulated activity-dependent fatigue. These modules are naturally endowed with a rich repertoire of activity regimes which range from quasi-stable dynamics, possibly exploited to store information or provide persistent input to other modules, to collective oscillations reminiscent of the Up/Down activity cycle observed during sleep and deep anesthesia. Finally, we conclude showing that such slow oscillations, spontaneously expressed by the isolated cortex, can provide an ideal experimental framework to infer the dynamical properties of these cortical modules which in turn can inform also on cortical function in other brain states, such as during wakefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott, L.F., Regehr, W.G.: Synaptic computation. Nature 431(7010), 796–803 (2004)

    Article  Google Scholar 

  2. Adrian, E.D.: The impulses produced by sensory nerve endings: Part I. J. Physiol. 61(1), 49–72 (1926)

    Article  Google Scholar 

  3. Amari, S.I.: Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Trans. Comput. C–21(11), 1197–1206 (1972). https://doi.org/10.1109/T-C.1972.223477

    Article  MathSciNet  Google Scholar 

  4. Amit, D.J., Brunel, N.: Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7(3), 237–252 (1997)

    Article  Google Scholar 

  5. Amit, D.J., Tsodyks, M.: Quantitative study of attractor neural network retrieving at low spike rates: I. substratespikes, rates and neuronal gain. Netw. Comput. Neural 2(3), 259–273 (1991). https://doi.org/10.1088/0954-898X/2/3/003

    Article  Google Scholar 

  6. Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.J.: Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. J. Neurosci. 22(19), 8691–8704 (2002)

    Article  Google Scholar 

  7. Bettinardi, R.G., Tort-colet, N., Ruiz-mejias, M., Sanchez-vives, M.V., Deco, G.: Gradual emergence of spontaneous correlated brain activity during fading of general anesthesia in rats: evidences from fMRI and local field potentials. NeuroImage 114, 185–198 (2015). https://doi.org/10.1016/j.neuroimage.2015.03.037

    Article  Google Scholar 

  8. Bhattacharjee, A., Kaczmarek, L.K.: For K+ channels, Na+ is the new Ca2+. Trends Neurosci. 28(8), 422–428 (2005). https://doi.org/10.1016/j.tins.2005.06.003

    Article  Google Scholar 

  9. Buonomano, D.V., Maass, W.: State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10(2), 113–125 (2009). https://doi.org/10.1038/nrn2558

    Article  Google Scholar 

  10. Capone, C., Rebollo, B., Muñoz, A., Illa, X., Del Giudice, P., Sanchez-Vives, M. V., Mattia, M.: Slow waves in cortical slices: how spontaneous activity is shaped by laminar structure. Cereb. Cortex (November), 1–17 (2017). https://doi.org/10.1093/cercor/bhx326

  11. Chauvette, S., Volgushev, M., Timofeev, I.: Origin of active states in local neocortical networks during slow sleep oscillation. Cereb. Cortex 20(11), 2660–2674 (2010). https://doi.org/10.1093/cercor/bhq009

    Article  Google Scholar 

  12. Compte, A., Sanchez-Vives, M.V., McCormick, D.A., Wang, X.J.: Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 89(5), 2707–2725 (2003). https://doi.org/10.1152/jn.00845.2002

    Article  Google Scholar 

  13. Curto, C., Sakata, S., Marguet, S., Itskov, V., Harris, K.D.: A simple model of cortical dynamics explains variability and state dependence of sensory responses in urethane-anesthetized auditory cortex. J. Neurosci. 29(34), 10,600–10612 (2009). https://doi.org/10.1523/JNEUROSCI.2053-09.2009

    Article  Google Scholar 

  14. David, F., Schmiedt, J., Taylor, H., Orban, G., Di Giovanni, G., Uebele, V., Renger, J., Lambert, R., Leresche, N., Crunelli, V.: Essential thalamic contribution to slow waves of natural sleep. J. Neurosci. 33(50), 19599–19610 (2013). https://doi.org/10.1523/JNEUROSCI.3169-13.2013

    Article  Google Scholar 

  15. Deco, G., Martí, D., Ledberg, A., Reig, R., Sanchez-Vives, M.V.: Effective reduced diffusion-models: a data driven approach to the analysis of neuronal dynamics. PLoS Comput. Biol. 5(12), e1000,587 (2009). https://doi.org/10.1371/journal.pcbi.1000587

  16. Deco, G., Tononi, G., Boly, M., Kringelbach, M.L.: Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16(7), 430–439 (2015). https://doi.org/10.1038/nrn3963

    Article  Google Scholar 

  17. Diekelmann, S., Born, J.: The memory function of sleep. Nat. Rev. Neurosci. 11(2), 114–126 (2010). https://doi.org/10.1038/nrn2762

    Article  Google Scholar 

  18. Douglas, R.J., Martin, K.A.C.: Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004). https://doi.org/10.1146/annurev.neuro.27.070203.144152

    Article  Google Scholar 

  19. FitzHugh, R.: Impulses and physiologcal states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961). https://doi.org/10.1016/S0006-3495(61)86902-6

    Article  Google Scholar 

  20. Fröhlich, F.: Endogenous electric fields may guide neocortical network activity. Neuron 67(1), 129–143 (2010). https://doi.org/10.1016/j.neuron.2010.06.005

    Article  Google Scholar 

  21. Fusi, S., Mattia, M.: Collective behavior of networks with linear (VLSI) integrate-and-fire neurons. Neural Comput. 11(3), 633–652 (1999)

    Article  Google Scholar 

  22. Gigante, G., Mattia, M., Del Giudice, P.: Diverse population-bursting modes of adapting spiking neurons. Phys. Rev. Lett. 98(14), 148,101 (2007). https://doi.org/10.1103/PhysRevLett.98.148101

  23. Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., Van Essen, D.C.: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016). https://doi.org/10.1038/nature18933

    Article  Google Scholar 

  24. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79(8), 2554–2558 (1982). https://doi.org/10.1073/pnas.79.8.2554

    Article  MathSciNet  MATH  Google Scholar 

  25. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.: Principles of Neural Science, vol. 4. McGraw-Hill, New York (2000)

    Google Scholar 

  26. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York (1999)

    Google Scholar 

  27. Lapicque, L.: Recherches quantitatives sur lexcitation électrique des nerfs traitée comme une polarisation. J. Physiol. Pathol. Générale 9, 567–578; 9, 620–635 (1907)

    Google Scholar 

  28. Latham, P.E., Richmond, B.J., Nelson, P.G., Nirenberg, S.: Intrinsic dynamics in neuronal networks. I. Theory. J. Neurophysiol. 83(2), 808–827 (2000)

    Article  Google Scholar 

  29. Linaro, D., Storace, M., Mattia, M.: Inferring network dynamics and neuron properties from population recordings. Front. Comput. Neurosci. 5, 1–17 (2011). https://doi.org/10.3389/fncom.2011.00043

    Article  Google Scholar 

  30. Markov, N.T., Ercsey-Ravasz, M., Van Essen, D.C., Knoblauch, K., Toroczkai, Z., Kennedy, H.: Cortical high-density counterstream architectures. Science 342(6158), 1238,406 (2013). DOI https://doi.org/10.1126/science.1238406

  31. Marshall, L., Helgadóttir, H., Mölle, M., Born, J.: Boosting slow oscillations during sleep potentiates memory. Nature 444(7119), 610–613 (2006). https://doi.org/10.1038/nature05278

    Article  Google Scholar 

  32. Mascaro, M., Amit, D.J.: Effective neural response function for collective population states. Netw. Comput. Neural 10(4), 351–373 (1999)

    Article  Google Scholar 

  33. Massimini, M., Huber, R., Ferrarelli, F., Hill, S.L., Tononi, G.: The sleep slow oscillation as a traveling wave. J. Neurosci. 24(31), 6862–6870 (2004). https://doi.org/10.1523/JNEUROSCI.1318-04.2004

    Article  Google Scholar 

  34. Mattia, M., Del Giudice, P.: Population dynamics of interacting spiking neurons. Phys. Rev. E 66(5 Pt 1), 051,917 (2002)

    Google Scholar 

  35. Mattia, M., Del Giudice, P.: Finite-size dynamics of inhibitory and excitatory interacting spiking neurons. Phys. Rev. E 70, 052,903 (2004). DOI https://doi.org/10.1103/PhysRevE.70.052903

  36. Mattia, M., Pani, P., Mirabella, G., Costa, S., Del Giudice, P., Ferraina, S.: Heterogeneous attractor cell assemblies for motor planning in premotor cortex. J. Neurosci. 33(27), 11155–11168 (2013). https://doi.org/10.1523/JNEUROSCI.4664-12.2013

    Article  Google Scholar 

  37. Mattia, M., Sanchez-Vives, M.V.: Exploring the spectrum of dynamical regimes and timescales in spontaneous cortical activity. Cogn. Neurodyn. 6(3), 239–250 (2012). https://doi.org/10.1007/s11571-011-9179-4

    Article  Google Scholar 

  38. Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120(Pt 4), 701–722 (1997)

    Article  Google Scholar 

  39. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962). https://doi.org/10.1109/JRPROC.1962.288235

    Article  Google Scholar 

  40. Ostojic, S., Brunel, N.: From spiking neuron models to linear-nonlinear models. PLoS Comput. Biol. 7(1), e1001,056 (2011). https://doi.org/10.1371/journal.pcbi.1001056

    Article  MathSciNet  Google Scholar 

  41. Park, H.J., Friston, K.J.: Structural and functional brain networks: from connections to cognition. Science 342(6158), 1238,411 (2013). https://doi.org/10.1126/science.1238411

  42. Puccini, G.D., Sanchez-Vives, M.V., Compte, A.: Selective detection of abrupt input changes by integration of spike-frequency adaptation and synaptic depression in a computational network model. J. Physiol. Paris 100(1), 1–15 (2006)

    Article  Google Scholar 

  43. Puccini, G.D., Sanchez-Vives, M.V., Compte, A.: Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits. PLoS Comput. Biol. 3(5), e82 (2007)

    Article  Google Scholar 

  44. Rabinovich, M.I., Huerta, R., Laurent, G.: Transient dynamics for neural processing. Science 321(5885), 48–50 (2008). https://doi.org/10.1126/science.1155564

    Article  Google Scholar 

  45. Rakic, P.: Specification of cerebral cortical areas. Science 241(4862), 170–176 (1988)

    Article  Google Scholar 

  46. Rakic, P.: Confusing cortical columns. Proc. Natl. Acad. Sci. USA 105(34), 12099–12100 (2008). https://doi.org/10.1073/pnas.0807271105

    Article  Google Scholar 

  47. Reig, R., Mattia, M., Compte, A., Belmonte, C., Sanchez-Vives, M.V.: Temperature modulation of slow and fast cortical rhythms. J. Neurophysiol. 103(3), 1253–1261 (2010). https://doi.org/10.1152/jn.00890.2009

    Article  Google Scholar 

  48. Ricciardi, L.M., Sacerdote, L.: The Ornstein-Uhlenbeck process as a model for neuronal activity. I. mean and variance of the firing time. Biol. Cybern. 35(1), 1–9 (1979)

    Article  Google Scholar 

  49. Ruiz-Mejias, M., Ciria-Suarez, L., Mattia, M., Sanchez-Vives, M.V.: Slow and fast rhythms generated in the cerebral cortex of the anesthetized mouse. J. Neurophysiol. 106(6), 2910–2921 (2011). https://doi.org/10.1152/jn.00440.2011

    Article  Google Scholar 

  50. Sakata, S., Harris, K.D.: Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64(3), 404–418 (2009). https://doi.org/10.1016/j.neuron.2009.09.020

    Article  Google Scholar 

  51. Sanchez-Vives, M.V., Mattia, M.: Slow wave activity as the default mode of the cerebral cortex. Arch. Ital. Biol. 152(2-3), 147–155 (2014). DOI https://doi.org/10.12871/000298292014239

  52. Sanchez-Vives, M.V., Mattia, M., Compte, A., Perez-Zabalza, M., Winograd, M., Descalzo, V.F., Reig, R.: Inhibitory modulation of cortical up states. J. Neurophysiol. 104(3), 1314–1324 (2010). https://doi.org/10.1152/jn.00178.2010

    Article  Google Scholar 

  53. Sanchez-Vives, M.V., McCormick, D.A.: Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3(10), 1027–1034 (2000). https://doi.org/10.1038/79848

    Article  Google Scholar 

  54. Sanchez-Vives, M.V., Nowak, L.G., McCormick, D.A.: Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J. Neurosci. 20(11), 4286–4299 (2000). 20/11/4286. https://doi.org/10.1523/JNEUROSCI.20-11-04286.2000

    Article  Google Scholar 

  55. Sancristóbal, B., Rebollo, B., Boada, P., Sanchez-Vives, M.V., Garcia-Ojalvo, J.: Collective stochastic coherence in recurrent neuronal networks. Nat. Phys. 12, 1–8 (2016). https://doi.org/10.1038/nphys3739

    Article  Google Scholar 

  56. Sarasso, S., Rosanova, M., Casali, A.G., Casarotto, S., Fecchio, M., Boly, M., Gosseries, O., Tononi, G., Laureys, S., Massimini, M.: Quantifying cortical eeg responses to tms in (un) consciousness. Clin. EEG Neurosci. 45(1), 40–49 (2014)

    Article  Google Scholar 

  57. Sheroziya, M., Timofeev, I.: Global intracellular slow-wave dynamics of the thalamocortical system. J. Neurosci. 34(26), 8875–8893 (2014). https://doi.org/10.1523/JNEUROSCI.4460-13.2014

    Article  Google Scholar 

  58. Shu, Y., Hasenstaub, A., McCormick, D.A.: Turning on and off recurrent balanced cortical activity. Nature 423(6937), 288–293 (2003). https://doi.org/10.1038/nature01616

    Article  Google Scholar 

  59. Steriade, M., Nuñez, A., Amzica, F.: A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13(8), 3252–3265 (1993)

    Article  Google Scholar 

  60. Stroh, A., Adelsberger, H., Groh, A., Rühlmann, C., Fischer, S., Schierloh, A., Deisseroth, K., Konnerth, A.: Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 77(6), 1136–1150 (2013). https://doi.org/10.1016/j.neuron.2013.01.031

    Article  Google Scholar 

  61. Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T.J., Steriade, M.: Origin of slow cortical oscillations in deafferented cortical slabs. Cereb. Cortex 10(12), 1185–1199 (2000)

    Article  Google Scholar 

  62. Tononi, G., Cirelli, C.: Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81(1), 12–34 (2014). https://doi.org/10.1016/j.neuron.2013.12.025

    Article  Google Scholar 

  63. Tsuda, I.: Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav. Brain Sci. 24(5), 793–810 (2001). (discussion 810–848)

    Article  Google Scholar 

  64. Tuckwell, H.C.: Introduction to Theoretical Neurobiology; Nonlinear and Stochastic Theories, vol. 2; vol. 8. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  65. Van Vreeswijk, C., Sompolinsky, H.: Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274(5293), 1724–1726 (1996)

    Article  Google Scholar 

  66. Vyazovskiy, V.V., Harris, K.D.: Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat. Rev. Neurosci. 14(6), 443–451 (2013). https://doi.org/10.1038/nrn3494

    Article  Google Scholar 

  67. Wang, X.J.: Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19(21), 9587–9603 (1999)

    Article  Google Scholar 

  68. Wang, X.J.: Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36(5), 955–968 (2002)

    Article  Google Scholar 

  69. Wang, X.J., Liu, Y., Sanchez-Vives, M.V., McCormick, D.A.: Adaptation and temporal decorrelation by single neurons in the primary visual cortex. J. Neurophysiol. 89(6), 3279–3293 (2003)

    Article  Google Scholar 

  70. Wester, J.C., Contreras, D.: Columnar interactions determine horizontal propagation of recurrent network activity in neocortex. J. Neurosci. 32(16), 5454–5471 (2012). https://doi.org/10.1523/JNEUROSCI.5006-11.2012

    Article  Google Scholar 

  71. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972). https://doi.org/10.1016/S0006-3495(72)86068-5

    Article  Google Scholar 

  72. Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O’Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., Takano, T., Deane, R., Nedergaard, M.: Sleep drives metabolite clearance from the adult brain. Science 342(6156), 373–377 (2013). https://doi.org/10.1126/science.1241224

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Gonzales-Liencres for comments on this manuscript. This work was in part supported by CORTICONIC (EC FP7 grant 600806) and by the EU Horizon 2020 Research and Innovation Program under HBP SGA1 (grant 720270) to MM and MVSV, by the Spanish Ministerio de Ciencia e Innovación (BFU2017-85048-R) and by PCIN-2015-162-C02-01 (FLAG ERA) to MVSV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Mattia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mattia, M., Sanchez-Vives, M.V. (2019). Unraveling Brain Modularity Through Slow Oscillations. In: Corinto, F., Torcini, A. (eds) Nonlinear Dynamics in Computational Neuroscience. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-71048-8_2

Download citation

Publish with us

Policies and ethics