Skip to main content

Improvement on Minimum Distance of Symbol-Pair Codes

  • Conference paper
  • First Online:
Cryptography and Coding (IMACC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10655))

Included in the following conference series:

Abstract

Symbol-pair codes were first introduced by Cassuto and Blaum (2010). The minimum pair distance of a code is a criterion that characterises the error correcting capability of the code with respect to pair errors. The codes that achieve the optimal minimum pair distance (for given codeword length, code book size and alphabet) are called Maximum Distance Separable (MDS) symbol-pair codes. A way to study the minimum pair distance of a code is through its connection to the minimum Hamming distance of the code. For certain structured codes, these two types of distances can be very different. Yaakobi et al. (2016) showed that for a binary cyclic code, the minimum pair distance is almost three halves of its minimum Hamming distance. We extend this connection to q-ary (q is a prime power) constacyclic codes. The extension involves non-trivial usage of the double counting technique in combinatorics. Such a connection naturally yields a constructive lower bound on the minimum pair distance of q-ary symbol-pair codes. For some choices of the code parameters, this lower bound matches the Singleton type upper bound, yielding q-ary MDS symbol-pair codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cassuto, Y., Blaum, M.: Codes for symbol-pair read channels. Trans. Inf. Theory 57(12), 8011–8020 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chee, Y.M., Kiah, H. M., Wang, C.: Maximum distance separable symbol-pair codes. In: Proceedings of International Symposium Information Theory, Cambridge, MA, USA, pp. 2886–2890 (2012)

    Google Scholar 

  3. Yaakobi, E., Bruck. J., Siegel, P.H.: Construction and decoding of cyclic codes over \(b\)-symbol read channels. IEEE Trans. Inf. Theory 62(4) (2016)

    Google Scholar 

  4. Kai, X.S., Zhu, S.X., Li, P.: A construction of new MDS symbol-pair codes. IEEE Trans. Inf. Theory 61(11) (2015)

    Google Scholar 

  5. De Boer, M.A.: Almost MDS codes. Designs Codes Cryptogr. 9(2), 143–155 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chee, Y.M., Ji, L., Kiah, H.M., Wang, C., Yin, J.: Maximum distance separable codes for symbol-pair read channels. IEEE Trans. Inf. Theory 59(11), 7259–7267 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, B., Lin, L., Liu, H.: Constacyclic symbol-pair codes: lower bounds and optimal constructions. arXiv:1605. 03460v1 [cs. IT] (2016)

  8. Kai, X.S., Zhu, S.X., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cassuto, Y., Blaum, M.: Codes for symbol-pair read channels. In: Proceedings of International Symposium Information Theory, Austin, TX, USA, pp. 988–992 (2010)

    Google Scholar 

  11. Cassuto, Y., Litsyn, S.: Symbol-pair codes: algebraic constructions and asymptotic bounds. In: Proceedings of International Symposium Information Theory, St. Petersburg, Russia, pp. 2348–2352 (2011)

    Google Scholar 

  12. Chee, Y.M., Kiah, H.M., Wang, C.: Maximum distance separable symbol-pair codes. In: Proceedings of International Symposium Information Theory, Cambridge, MA, USA, pp. 2886–2890 (2012)

    Google Scholar 

  13. Yaakobi, E., Bruck, J., Siegel, P.H.: Decoding of Cyclic Codes over Symbol-Pair Read Channels. In: Proceedings of International Symposium Information Theory, Cambridge, MA, USA, pp. 2891–2895 (2012)

    Google Scholar 

  14. Li, S.X., Ge, G.N.: Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes. Des. Codes Crytogr. 84, 359–372 (2017). https://doi.org/10.1007/s10623-016-0271-y

Download references

Acknowledgment

The author expresses her gratitude to Liming Ma and Fuchun Lin for their instructive and useful suggestions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Zhang .

Editor information

Editors and Affiliations

Appendix

Appendix

For better understanding,we give detailed proof of Lemma 1.

Proof

Let \(\varvec{x}=(x_0,x_1,\cdots ,x_{n-1})\in \varSigma ^n.\) Our goal is to calculate \(w_p(\varvec{x}),\) namely,

$$w_p(\varvec{x})=wt\{(x_0,x_1),(x_1,x_2),\cdots ,(x_{n-1},x_0)\}.$$

Now we let

\(S_0=\{i:(x_i,x_{i+1})\ne (0,0)\ \text {and}\ x_i=1\},\)

\(S_1=\{i:(x_i,x_{i+1})= (0,1)\}.\)

In the cases above, \(S_0\) contains all the pairs (1, 0) and (1, 1). \(S_1\) contains all the pairs (0, 1). Hence, \(|S_0|=\omega _H(\varvec{x})\), \(S_0\cap S_1=\emptyset \), and \(\omega _p(\varvec{x})=|S_0|+|S_1|\). For all \(0\le i\le {n-1}\), \(i\in S_1\) if and only if \(x_{i+1}=1\) and \(x_i=0\). Thus, \(x_i+x_{i+1}=1\) or \(x_{i+1}^{'}=1\), where \(x_i=0\). Hence, we get

$$\begin{aligned} |S_1|=|\{i: x_{i+1}=1\ \text {and} \ x_i=0\}|. \end{aligned}$$

Note that for any \(\varvec{x}\in \varSigma ^n\),

$$\begin{aligned} |\{i: x_{i+1}=1\ \text {and}\ x_i=0\}|=|\{i:x_{i+1}=0\ \text {and}\ x_i=1\}|, \end{aligned}$$

and the sum of the cardinality of the two sets is \(\omega _H(\varvec{x}^{'})\). Hence, \(S_1=\frac{\omega _H(\varvec{x}^{'})}{2}\) and

$$\begin{aligned} \omega _p(\varvec{x}) =|S_0|+|S_1|=\omega _H(\varvec{x})+\frac{\omega _H(\varvec{x}^{'})}{2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H. (2017). Improvement on Minimum Distance of Symbol-Pair Codes. In: O'Neill, M. (eds) Cryptography and Coding. IMACC 2017. Lecture Notes in Computer Science(), vol 10655. Springer, Cham. https://doi.org/10.1007/978-3-319-71045-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71045-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71044-0

  • Online ISBN: 978-3-319-71045-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics