Skip to main content

Investigating Crime Rate Prediction Using Street-Level Images and Siamese Convolutional Neural Networks

  • Conference paper
  • First Online:
Computational Neuroscience (LAWCN 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 720))

Included in the following conference series:

Abstract

The analysis of the environment for crime prediction is based on the premise that criminal behavior is influenced by the nature of the environment in which occurs. Street-level images are the closest digital depiction available of the urban environment, in which most street crimes take place. This work proposes a crime rate prediction model that uses street-level images to classify street crimes into low or high crime rate levels. For that, we use a 4-Cardinal Siamese Convolution Neural Network (4-CSCNN) and train and test our analytic model in two regions of Rio de Janeiro, Brazil, that showed high street crime concentrations between the years of 2007 and 2016. With this preliminary experiment, we investigate the use of convolutional neural networks (CNN) for the task of crime rating through visual scene analysis and found possibilities towards automatic crime rate predictions using CNN models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.wikicrimes.org.

References

  1. Wortley, R., Mazerolle, L.: Environmental criminology and crime analysis: situating the theory, analytic approach and application (2008)

    Google Scholar 

  2. Brantingham, P.L., Brantingham, P.J.: Criminality of place. Eur. J. Crim. Policy Res. 3(3), 5–26 (1995)

    Article  Google Scholar 

  3. Cohen, L.E., Felson, M.: Social change and crime rate trends: a routine activity approach. Am. Sociol. Rev. 44(4), 588–608 (1979)

    Article  Google Scholar 

  4. Brantingham, P.J., Brantingham, P.L.: Environment, routine and situation: toward a pattern theory of crime. Adv. Criminolog. Theory 5, 259–294 (1993)

    Google Scholar 

  5. Eck, J.E., Weisburd, D.L.: Crime places in crime theory. Crime Prevent. Stud. 4, 1–33 (1995)

    Google Scholar 

  6. Wilson, J.Q., Kelling, G.L.: Broken windows. Atl. Month. 249(3), 29 (1982)

    Google Scholar 

  7. Sherman, L.W., Gartin, P.R., Burger, M.E.: Hot spots of predatory crime: routine activitices and the criminology of place. Criminology 27(June), 27–55 (1989)

    Article  Google Scholar 

  8. Google: Google Street View API (2017). https://developers.google.com/maps/documentation/streetview. Accessed 09 May 2017

  9. Arietta, S.M., Efros, A.A.: City forensics: using visual elements to predict non-visual city attributes. Trans. Visual. Comput. Graph. 20(12), 2624–2633 (2014)

    Article  Google Scholar 

  10. Khosla, A., An, B., Lim, J.: Looking beyond the visible scene. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  11. Gebru, T., Krause, J., Wang, Y., Chen, D., Deng, J., Aiden, E.L., Fei-Fei, L.: Using deep learning and Google street view to estimate the demographic makeup of the US, pp. 1–41 (2017)

    Google Scholar 

  12. Block, C.: The GeoArchive: an information foundation for community policing. In: Crime Mapping and Crime Prevention, pp. 27–81 (1998)

    Google Scholar 

  13. Bowers, K.J., Johnson, S.D., Pease, K.: Prospective hot-spotting: the future of crime mapping? Br. J. Criminol. 44(5), 641–658 (2004)

    Article  Google Scholar 

  14. Chainey, S., Tompson, L., Uhlig, S.: The utility of hotspot mapping for predicting spatial patterns of crime. Secur. J. 21, 4–28 (2008)

    Article  Google Scholar 

  15. Johansson, E., Gahlin, C., Borg, A.: Crime hotspots: an evaluation of the KDE spatial mapping technique. In: EISIC European Intelligence and Security Informatics Conference, Manchester, UK, pp. 69–74. IEEE (2015)

    Google Scholar 

  16. Gerber, M.S.: Predicting crime using Twitter and kernel density estimation. Decis. Support Syst. 61(1), 115–125 (2014)

    Article  Google Scholar 

  17. Caplan, J.M., Kennedy, L.W., Miller, J.: Risk terrain modeling: brokering criminological theory and GIS methods for crime forecasting. Justice Q. 28(2), 360–381 (2011)

    Article  Google Scholar 

  18. Drawve, G., Thomas, S.A., Walker, J.T.: Bringing the physical environment back into neighborhood research: the utility of RTM for developing an aggregate neighborhood risk of crime measure. J. Crim. Justice 44, 21–29 (2016)

    Article  Google Scholar 

  19. Dubey, A., Naik, N., Parikh, D., Raskar, R., Hidalgo, C.A.: Deep learning the city: quantifying urban perception at a global scale. pp. 196–212 (2016)

    Google Scholar 

  20. Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.: What makes Paris look like Paris? ACM Trans. Graph. 31(4), 1–9 (2012)

    Article  Google Scholar 

  21. Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. Int. J. Pattern Recogn. Artif. Intell. 7(04), 669–688 (1993)

    Article  Google Scholar 

  22. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  23. Lin, T.-Y., Cui, Y., Belongie, S., Hays, J.: Learning deep representations for ground-to-aerial geolocalization. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5007–5015. IEEE (2015)

    Google Scholar 

  24. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional neural networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2015)

    Google Scholar 

  25. Lieman-Sifry, J.: Convolutional neural networks to predict location from Colorado Google street view images: Galvanize capstone project (2016). https://github.com/jliemansifry/streetview/

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  28. Furtado, V., Ayres, L., de Oliveira, M., Vasconcelos, E., Caminha, C., D’Orleans, J., Belchior, M.: Collective intelligence in law enforcement - the WikiCrimes system. Inf. Sci. (NY) 180(1), 4–17 (2010)

    Article  Google Scholar 

  29. Mapzen: Mapzen metro extracts (2017). https://mapzen.com/data/metro-extracts/. Accessed 09 May 2017

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ImageNet Challenge, vol. 110 (2014). https://doi.org/10.1016/j.infsof.2008.09.005

  31. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  32. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Cogn. Modeling 5(3), 1 (1988)

    MATH  Google Scholar 

  33. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  34. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

  35. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org

  36. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  37. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. I, pp. 886–893 (2005)

    Google Scholar 

  38. van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.: Scikit-image: image processing in Python. PeerJ 2, e453 (2014)

    Article  Google Scholar 

  39. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgemnts

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X GPU used for this research. This work is supported by the Research Initiation Scholarship Program - Doctorate in Progress (PBIP-DA) from Federal University of Pelotas (UFPel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia O. Andersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andersson, V.O., Birck, M.A.F., Araujo, R.M. (2017). Investigating Crime Rate Prediction Using Street-Level Images and Siamese Convolutional Neural Networks. In: Barone, D., Teles, E., Brackmann, C. (eds) Computational Neuroscience. LAWCN 2017. Communications in Computer and Information Science, vol 720. Springer, Cham. https://doi.org/10.1007/978-3-319-71011-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71011-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71010-5

  • Online ISBN: 978-3-319-71011-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics