Skip to main content

How Artificial Intelligence is Supporting Neuroscience Research: A Discussion About Foundations, Methods and Applications

  • Conference paper
  • First Online:
Computational Neuroscience (LAWCN 2017)

Abstract

The Artificial Intelligence (AI) research field has presented a considerable growth in the last decades, helping researchers to explore new possibilities into their works. Neuroscience’s studies are characterized for recording high dimensional and complex brain data, making the data analysis computationally expensive and time consuming. Neuroscience takes advantage of AI techniques and the increasing processing power in modern computers, which helped improving the understanding of brain behavior. This paper presents some AI techniques, focusing mainly in Deep Learning (DL), as a powerful tool for data analysis. The foundations and basic concepts of some DL models are presented in order to offer a brief understanding to scientists. Likewise, applications of these models on Neuroscience researches are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helmstaedter, M.: The mutual inspirations of machine learning and neuroscience. Neuron 86(1), 25–28 (2015)

    Article  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2007). ISBN-10: 0387310738, ISBN-13: 978-0387310732

    MATH  Google Scholar 

  3. Patel, M.J., Khalaf, A., Aizenstein, H.J.: Studying depression using imaging and machine learning methods. NeuroImage: Clin. 10, 115–123 (2016)

    Article  Google Scholar 

  4. Khachab, M., Mokbel, C., Kaakour, S., Saliba, N., Chollet, G.: Brain imaging and machine learning for brain-computer interface. In: Biomedical Imaging, InTech (2010)

    Google Scholar 

  5. Lemm, S., Blankertz, B., Dickhaus, T., Müller, K.-R.: Introduction to machine learning for brain imaging. NeuroImage 56(2), 387–399 (2011)

    Article  Google Scholar 

  6. Yamins, D.L.K., DiCarlo, J.J.: Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016)

    Article  Google Scholar 

  7. Kasabov, N.K.: NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62–76 (2014)

    Article  Google Scholar 

  8. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  9. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  10. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)

    Article  MATH  Google Scholar 

  11. Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D.: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage 145, 137–165 (2016)

    Article  Google Scholar 

  12. Calhoun, V.D., Sui, J.: Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness. Biol. Psychiatry: Cogn. Neurosci. Neuroimaging 1, 230–244 (2016)

    Google Scholar 

  13. Plis, S.M., Hjelm, D.R., Salakhutdinov, R., Allen, E.A., Bockholt, H.J., Long, J.D., Johnson, H.J., Paulsen, J.S., Turner, J., Calhoun, V.D.: Deep learning for neuroimaging: a validation study. Front. Neurosci. 8, 1–11 (2014)

    Article  Google Scholar 

  14. Herculano-Houzel, S.: The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. In: Proceedings of the National Academy of Sciences, USA, vol. 109 (Supp 1), pp. 10661–10668 (2012)

    Google Scholar 

  15. Herculano-Houzel, S.: The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009). https://doi.org/10.3389/neuro.09.031.2009

    Article  Google Scholar 

  16. Nygren, K.: Stock prediction - a neural network approach. Master thesis, Royal Institute of Technology, KTH (April 2004)

    Google Scholar 

  17. Kasabov, N.K.: Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  18. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. Computer 29(3), 31–44 (1996)

    Article  Google Scholar 

  19. Ng, A., Ngiam, J., Foo, C., Mai, Y., Suen, C.: UFLDL Tutorial (2013) Retrieved from Stanford Deep Learning: http://ufldl.stanford.edu/wiki/index.php/Neural_Networks

  20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  Google Scholar 

  21. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4(2), R1–R13 (2007)

    Article  Google Scholar 

  22. Bi, L., Fan, X.A., Liu, Y.: EEG-based brain-controlled mobile robots: a survey. IEEE Trans. Hum. Mach. Syst. 43(2), 161–176 (2013)

    Article  Google Scholar 

  23. Balakrishnan, D., Puthusserypady, S.: Multilayer perceptrons for the classification of brain computer interface data. In: Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference (2005)

    Google Scholar 

  24. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

    Article  Google Scholar 

  25. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, p. 153 (2007)

    Google Scholar 

  26. Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis. Institut f. Informatik, Technische Univ. Munich (1991)

    Google Scholar 

  27. Schmidhuber, J.: Learning complex, extended sequences using the principle of history compression. Neural Comput. 4(2), 234–242 (1992)

    Article  Google Scholar 

  28. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 10, 1–40 (2009)

    MATH  Google Scholar 

  29. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Barlow, H.B.: Unsupervised learning. Neural Comput. 1, 295–311 (1989)

    Article  Google Scholar 

  31. Baum, E.B., Haussler, D.: What size net gives valid generalization? Neural Comput. 1(1), 151–160 (1989)

    Article  Google Scholar 

  32. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ng, A., Ngiam, J., Foo, C., Mai, Y., Suen, C.: UFLDL Tutorial (2013). Retrieved from Stanford Deep Learning: http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity

  34. Calhoun, V.D., Silva, R.F., Adali, T., Rachakonda, S.: Comparison of PCA approaches for very large group ICA. Neuroimage 118, 662–666 (2015). https://doi.org/10.1016/j.neuroimage.2015.05.047

    Article  Google Scholar 

  35. Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D., Fulham, M.J.: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease IEEE Trans. Biomed. Eng. 62, 1132–1140 (2015)

    Google Scholar 

  36. Han, X., Zhong, Y., He, L., Philip, S.Y., Zhang, L.: The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds.) BIH 2015. LNCS, vol. 9250, pp. 156–166. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23344-4_16

    Chapter  Google Scholar 

  37. Payan, A., Montana, G.: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv:1502.02506 (2015)

  38. Suk, H.I., Wee, C.Y., Lee, S.W., Shen, D.: State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Neuroimage 129, 292–307 (2016)

    Article  Google Scholar 

  39. Suk, H.I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 583–590. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_72

    Chapter  Google Scholar 

  40. Mechelli, A., Prata, D., Kefford, C., Kapur, S.: Predicting clinical response in people at ultra-high risk of psychosis: a systematic and quantitative review. Drug Discov. Today 20, 924–927 (2015)

    Article  Google Scholar 

  41. Munsell, B.C., Wee, C.Y., Keller, S.S., Weber, B., Elger, C., da Silva, L.A.T., Nesland, T., Styner, M., Shen, D., Bonilha, L.: Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. Neuroimage 118, 219–230 (2015)

    Article  Google Scholar 

  42. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324 (1988)

    Google Scholar 

  43. Hubel, D., Wiesel, T.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (London) 195, 215–243 (1968)

    Article  Google Scholar 

  44. CS231n Convolutional Neural Networks for Visual Recognition. http://cs231n.github.io/convolutional-networks/. Accessed 14 Sept 2017

  45. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  46. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007)

    Article  Google Scholar 

  47. Ranzato, M., Poultney, C., Chopra, S., LeCun, Y.: Efficient learning of sparse representations with an energy-based model. In: Platt, J. et al. (eds.), Advances in neural information processing systems (NIPS 2006). MIT Press (2006)

    Google Scholar 

  48. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  49. Sarraf, S., Tofighi, G.: Classification of Alzheimer’s Disease using fMRI Data and Deep Learning Convolutional Neural Networks. arXiv preprint arXiv:1603.08631 (2016)

  50. Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Adni, M.J.: Multi-modal neuroimaging feature learning for multi-class diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 62(4), 1132–1140 (2015). https://doi.org/10.1109/TBME.2014.2372011

    Article  Google Scholar 

  51. van der Burgh, H.K., Schmidt, R., Westeneng, H.J., de Reus, M.A., van den Berg, L.H., van den Heuvel, M.P.: Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. NeuroImage: Clinic. 13, 361–369 (2017). ISSN 2213-1582. http://dx.doi.org/10.1016/j.nicl.2016.10.008

  52. Hüsken, M., Stagge, P.: Recurrent neural networks for time series classification. Neurocomputing 50, 223–235 (2003)

    Article  MATH  Google Scholar 

  53. Pascanu, R., Mikolov, T., Bengio, Y.: Understanding the exploding gradient problem. Computing Research Repository (CoRR) abs/1211.5063 (2012)

    Google Scholar 

  54. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  55. Graves, A., Mohamed, A.-R., Hinton, G.E.: Speech recognition with deep recurrent neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649. IEEE (2013)

    Google Scholar 

  56. Breuel, T.M., Ul-Hasan, A., Al-Azawi, M.A., Shafait, F.: High-performance OCR for printed English and Fraktur using LSTM networks. In: 12th International Conference on Document Analysis and Recognition, pp. 683–687. IEEE (2013)

    Google Scholar 

  57. Gonzalez-Dominguez, J., Lopez-Moreno, I., Sak, H., Gonzalez-Rodriguez, J., Moreno, P.J.: Automatic language identification using long short-term memory recurrent neural networks. In: Proceedings of Interspeech (2014)

    Google Scholar 

  58. Geiger, J.T., Zhang, Z., Weninger, F., Schuller, B., Rigoll, G.: Robust speech recognition using long short-term memory recurrent neural networks for hybrid acoustic modelling. In: Proceedings of Interspeech (2014)

    Google Scholar 

  59. Fan, Y., Qian, Y., Xie, F., Soong, F.K.: TTS synthesis with bidirectional LSTM based recurrent neural networks. In: Proceedings of Interspeech (2014)

    Google Scholar 

  60. Barak, O.: Recurrent neural networks as versatile tool of neuroscience research. Curr. Opin. Neurobiol. 46, 1–6 (2017)

    Article  Google Scholar 

  61. Rajan, K., Harvey, C.D., Tank, D.W.: Recurrent network models of sequence generation and memory. Neuron 90(1), 128–142 (2016). https://doi.org/10.1016/j.neuron.2016.02.009

    Article  Google Scholar 

  62. Güçlü, U., van Gerven, M.A.J.: Modeling the dynamics of human brain activity with recurrent neural networks. Front. Comput. Neurosci. 11, 7 (2017). https://doi.org/10.3389/fncom.2017.00007

    Article  Google Scholar 

  63. Sussillo, D., Churchland, M.M., Kaufman, M.T., Shenoy, K.V.: A neural network that finds a naturalistic solution for the production of muscle activity. Nat. Neurosci. 18, 1025–1033 (2015)

    Article  Google Scholar 

  64. Vieira, S., Pinaya, W.H.L., Mechelli, A.: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci. Biobehav. Rev. 74, 58–75 (2017). https://doi.org/10.1016/j.neubiorev.2017.01.002

    Article  Google Scholar 

  65. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael T. Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gonzalez, R.T., Riascos, J.A., Barone, D.A.C. (2017). How Artificial Intelligence is Supporting Neuroscience Research: A Discussion About Foundations, Methods and Applications. In: Barone, D., Teles, E., Brackmann, C. (eds) Computational Neuroscience. LAWCN 2017. Communications in Computer and Information Science, vol 720. Springer, Cham. https://doi.org/10.1007/978-3-319-71011-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71011-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71010-5

  • Online ISBN: 978-3-319-71011-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics