Skip to main content

Chaotic Synchronization of Neural Networks in FPGA

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 720))

Abstract

The objective of this work is to obtain a complete synchronization of Hopfield Neural Networks (HNN) with a delay using a Field Programmable Gate Array (FPGA) simulating in real-time a Natural Neural Networks (NNN). This work is motivated by research in Neurosciences involving the implantation of chips between the skull and the brain to prevent or ameliorate diseases such as Parkinson’s, Epilepsy and Depression. Our contribution is the introduction of new synchronization techniques based on the Qualitative Theory of Differential Equations, Chaos Theory and Algebraic Topology substituting calculations using the Lyapunov Stability Criterion (LSC). The presented technique does not depend on the Neural Networks to be synchronized but also presents a lower computational cost in comparison with previous works. The results show that FPGAs are good platforms for such experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Odekerken, V.J., Boel, J.A., Geurtsen, G.J., Schmand, B.A., Dekker, I.P., de Haan, R.J., Schuurman, P.R., de Bie, R.M.: Neuropsychological outcome after deep brain stimulation for Parkinson disease. Neurology 84, 1355–1361 (2015)

    Google Scholar 

  2. Little, S., Pogosyan, A., Neal, S., Zavala, B., Zrinzo, L., Hariz, M., Foltynie, T., Limousine, P., Ashkan, K., Fitzgerald, J., Green, A.L., Aziz, T.Z., Brown, P.: Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74(3), 449–457 (2013)

    Article  Google Scholar 

  3. Bob, P.: Chaos, Cognition and Disordered Brain. Activitas Nervosa Super. 50(4), 114–117 (2008)

    Article  Google Scholar 

  4. Cerutti, S., Carrault, G., Cluitmans, P.J., Kinie, A., Lipping, T., Nikolaidis, N., Pitas, I., Signorini, M.G.: Non-linear algorithms for processing biological signals. Comput. Methods Programs Biomed. 51(1–2), 51–73 (1996)

    Article  Google Scholar 

  5. Maron, G., Barone, D.A.C., Ramos, E.A.: Measuring the differences between spatial intelligence in different individuals using Lyapunov exponents. In: Proceedings of the 7th International Conference on Mass-Data Analysis of Images and Signals, MDA 2012, Berlin (2012)

    Google Scholar 

  6. Linas, R.R.: Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective. Front Cell Neurosci. 8, 320 (2014)

    Google Scholar 

  7. Cabral, J., Luckhoo, H., Woolrich, M., Joensson, M., Mohseni, H., Baker, A., Kringelbach, M.L., Deco, G.: Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. NeuroImage 90, 423–435 (2014)

    Article  Google Scholar 

  8. Frederickson, P., Kaplan, J.L., Yorke, E.D., Yorke, J.A.: The Liapunov dimension of strange attractors. J. Differ. Equ. 49(2), 185–207 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Viana, M.: Dynamical systems: moving into the next century. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited and Beyond. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56478-9_32

    Google Scholar 

  10. Viana, M., Alves, J.F., Bonatti, C.: SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math. 140, 298–351 (2000). Reprinted in the theory of chaotic attractors. Dedicated to J.A. Yorke in commemoration of his 60th birthday. Edited by B.R. Hunt, J.A. Kennedy, T.-Y. Li and H.E. Nusse. Springer Verlag, 443–490 (2004)

    Google Scholar 

  11. Pecora, L.M., Carroll, T.L.: Physical review letters. Phys. Rev. Lett. 64, 821 (1990)

    Article  MathSciNet  Google Scholar 

  12. Khadra, F.A.: Synchronization of chaotic systems via active disturbance rejection control. Intell. Control Autom. 8, 86–95 (2017)

    Article  Google Scholar 

  13. Ouannas, A., Abdelmaleka, S., Bendoukhaba, S.: Coexistence of some chaos synchronization types in fractional-order differential equations. Electron. J. Differ. Eqn. 2017(128), 1–15 (2017)

    Google Scholar 

  14. Zhang, Q., Lu, J.-A.: Chaos synchronization of a new chaotic system via nonlinear control. Chaos Solitons Fractals 37(1), 175–179 (2008)

    Article  MathSciNet  Google Scholar 

  15. González-Miranda, J.M.: Synchronization and Control of Chaos. An Introduction for Scientists and Engineers. Imperial College Press, London (2004)

    Book  Google Scholar 

  16. Al-Sawalha, M.M.: Projective reduce order synchronization of fractional order chaotic systems with unknown parameters. J. Nonlinear Sci. 10, 2103–2114 (2017)

    Article  MathSciNet  Google Scholar 

  17. Barone, D.A.C.: Sociedades Artificiais: a nova fronteira da inteligência nas máquinas. Bookman, Porto Alegre (2003)

    Google Scholar 

  18. Haykin, S.: Redes neurais: princípios e prática. Trad. Paulo Martins Engel. 2. edn. Porto Alegre, Bookman (2001)

    Google Scholar 

  19. Hebb, D.O.: Distinctive features of learning in the higher mammal. In: Delafresnaye, J.F. (ed.) Brain Mechanisms and Learning. Oxford University Press, London (1961)

    Google Scholar 

  20. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  21. Lima, E.L.: Grupo Fundamental e Espaços de Recobrimento, 4ª edição. IMPA (2012)

    Google Scholar 

  22. Lamure, H., Michelucci, D.: Solving geometric constraints by Homotopy. In: Third ACM Symposium on Solid Modeling and its Applications, pp. 263–269. ACM Press (1995)

    Google Scholar 

  23. Ahmed, E., Rose, J.: The effect of LUT and cluster size on deep-submicron FPGA performance and density. In: ACM Symposium on FPGAs, FPGA 2000, pp. 3–12 (2000)

    Google Scholar 

  24. Lewis, D., Ahmed, E., Baeckler, G., Betz, V., Bourgeault, M., Casshman, D., Galoway, D., Hutton, M., Lane, C., Lee, A., Leventis, P., Marquardt, S., McClintock, C., Padalia, K., Pedersen, B., Powell, G., Ratchev, B., Reddy, S., Sghleicher, J., Stevens, K., Yuan, R., Cliff, R., Rose, J.: The Stratix II logic and routing architecture. In: ACM Symposium on FPGAs, FPGA 2005, pp. 14–20 (2005)

    Google Scholar 

  25. Yau, H.T., Pu, Y.C., Li, S.C.: An FPGA-based PID controller design for chaos synchronization by evolutionary programming. Discrete Dyn. Nat. Soc. 2011, 1–11 (2011)

    Article  Google Scholar 

  26. Atoche, A.C., Perales, G.S., Gamboa, A.M., Enseñat, R.A.: Synchronization of chaotic systems: field programable gate array and nonlinear control feedback approach. In: IBERCHIP-2006 (2006)

    Google Scholar 

  27. Rajagopal, K., Guessas, L., Vaidyanathan, S., Karthikeyan, A., Srinivasan, A.: Dynamical analysis and FPGA implementation of a novel hyperchaotic system and its synchronization using adaptive sliding mode control and genetically optimized PID control. Math. Prob. Eng. 2017, Article ID 7307452, 14 p. (2017)

    Google Scholar 

  28. Karthikeyan, R., Prasina, A., Babu, R., Raghavendran, S.: FPGA implementation of novel synchronization methodology for a new chaotic system. Indian J. Sci. Technol. 8, 2 (2015)

    Google Scholar 

  29. Vaidyanathan, S., Volos, C.: Advances and Applications in Chaotic Systems. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-30279-9

    Book  MATH  Google Scholar 

  30. Muthuswamy, B., Banerjee, S.: A Route to Chaos Using FPGAs: Volume I: Experimental Observations. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18105-9

    Book  MATH  Google Scholar 

  31. Park, J., Sung, W.: FPGA based implementation of deep neural networks using on-chip memory only. In: ICASSP 2016 (2016)

    Google Scholar 

  32. Cuevas-Arteaga, B., Dominguez-Morales, J.P., Rostro-Gonzalez, H., Espinal, A., Jimenez-Fernandez, A.F., Gomez-Rodriguez, F., Linares-Barranco, A.: A SpiNNaker application: design, implementation and validation of SCPGs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10305, pp. 548–559. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59153-7_47

    Chapter  Google Scholar 

  33. WHO: World Health Statistics 2017: Monitoring health for the SDGs. http://www.who.int/gho/publications/world_health_statistics/2017/en/. Accessed 20 June 2017

  34. Cassidy, A., Andreou, A.G.: Dynamical digital silicon neurons. In: Biomedical Circuits and Systems Conference, BioCAS 2008, pp. 289–292. IEEE (2008)

    Google Scholar 

  35. Ambroise, M., Levi, T., Bornat, Y., Saighi, S.: Biorealistic: spiking neural network on FPGA. In: 2013 47th Annual Conference on Information Sciences and Systems (CISS) (2013)

    Google Scholar 

  36. Thomas, D.B., Luk, W.: Biorealistic spiking neural network on FPGA. In: 47th Annual Conference on Information Sciences and Systems, (CISS), pp. 1–6 (2013)

    Google Scholar 

  37. Zhu, Q., Song, A., Fei, S., Yang, Y., Cao, Z.: Synchronization control for stochastic neural networks with mixed time-varying delays. Sci. World J. 2014, Article ID 840185, 10 p. (2014). http://dx.doi.org/10.1155/2014/840185

  38. Yue, L., Yixin, Z., Wei, H.: Robust synchronization of uncertain chaotic neural networks with time-varying delay via stochastic sampled-data controller. In: Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE (2016)

    Google Scholar 

  39. Abdurahman, A., Hu, C., Muhammadhaji, A., Jiang, H.: Adaptive control strategy for projective synchronization of neural networks. In: Cong, F., Leung, A., Wei, Q. (eds.) ISNN 2017. LNCS, vol. 10261, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59072-1_30

    Chapter  Google Scholar 

  40. Park, J.H.: Chaos synchronization of a chaotic system via nonlinear control. Chaos Solitons Fractals 25, 579–584 (2005)

    Article  MATH  Google Scholar 

  41. London, M., Roth, A., Beeren, L., Häusser, M., Latham, P.E.: Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466(7302), 123–127 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias de Almeida Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Almeida Ramos, E., Bandeira, V., Reis, R., Bontorin, G. (2017). Chaotic Synchronization of Neural Networks in FPGA. In: Barone, D., Teles, E., Brackmann, C. (eds) Computational Neuroscience. LAWCN 2017. Communications in Computer and Information Science, vol 720. Springer, Cham. https://doi.org/10.1007/978-3-319-71011-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71011-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71010-5

  • Online ISBN: 978-3-319-71011-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics