Skip to main content

A Brain Computer Interface Using VEP and MMSC for Driving a Mechanical Arm

  • Conference paper
  • First Online:
Book cover Computational Neuroscience (LAWCN 2017)

Abstract

The following article presents the development of a BCI system using Visual Evoked Potential and a detection system based on Multiple Mean Squared Coherence method. The developed BCI was used to control a small robotic arm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  2. Dugdale, D., Hoch, D., Zieve, D.: Amyotrophic Lateral Sclerosis. A.D.A.M. Medical Encyclopedia (2010)

    Google Scholar 

  3. Pfurtscheller, G., da Silva, F.L.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(18), 42–57 (1999)

    Google Scholar 

  4. Allison, B., Pineda, J.: ERPs evoked by different matrix sizes: implications for a brain-computer interface (BCI) system. IEEE Trans. Neural Syst. Rehabil. Eng. 11(110), 3 (2003)

    Google Scholar 

  5. Kubler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J., Birbaumer, N.: Brain-computer communication: unlocking the locked. Psychol. Bull. 127(358), 75 (2001)

    Google Scholar 

  6. Olson, B., Si, J., Hu, J., He, J.: Closed loop cortical control of direction using support vector machines. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 72–80 (2005)

    Article  Google Scholar 

  7. Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-based environmental controller for the motion-disabled. IEEE J. NSRE 11(2), 137–140 (2003)

    Google Scholar 

  8. Wu, Z., Lai, Y., Xia, Y., Wu, D., Yao, D.: Stimulator selection in SSVEP based BCI. Med. Eng. Phys. 30(8), 1079–1088 (2008). Special Issue (part): Bioengineering in Taiwan

    Article  Google Scholar 

  9. de Sa, A.M., Felix, L., Infantosi, A.: A matrix-based algorithm for estimating multiple coherence of a periodic signal and its application to the multichannel EEG during sensory stimulation. IEEE Trans. Biomed. Eng. 51(7), 1140–1146 (2004)

    Article  Google Scholar 

  10. de Sá, A.M.F.L.M., Felix, L.B.: Improving the detection of evoked responses to periodic stimulation by using multiple coherence, application to EEG during photic stimulation. Med. Eng. Phys. 24(4), 245–252 (2002)

    Article  Google Scholar 

  11. Muller-Putz, G., Pfurtscheller, G.: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55(1), 361–364 (2008)

    Article  Google Scholar 

  12. McFarland, D.J., Wolpaw, J.R.: Sensorimotor rhythm-based brain computer interface (BCI): model order selection for autoregressive spectral analysis. J. Neural Eng. 5(2), 155 (2008)

    Article  Google Scholar 

  13. Wolpaw, J.R., McFarland, D.J., Vaughan, T.M., Schalk, G.: The wadsworth center brain-computer interface (BCI) research and development program. IEEE J. NSRE. 11(2), 1–4 (2003)

    Google Scholar 

  14. Kim, H.K., Park, S., Srinivasan, M.A.: Developments in brain-machine interfaces from the perspective of robotics. Hum. Mov. Sci. 28(2), 191–203 (2009)

    Article  Google Scholar 

  15. Curran, E.A., Stokes, M.J.: Learning to control brain activity: a review of the production and control of eeg components for driving brain-computer interface (BCI) systems. Brain Cogn. 51(3), 326–336 (2003)

    Article  Google Scholar 

  16. Neuper, C., Muller, G.R., Kubler, A., Birbaumer, N., Pfurtscheller, G.: Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Clin. Neurophysiol. 114(3), 399–409 (2003)

    Article  Google Scholar 

  17. Patil, P.G., Turner, D.A.: The development of brain-machine interface neuroprosthetic devices. Neurother. Device Ther. 5(1), 137–146 (2008)

    Article  Google Scholar 

  18. Niedermeyer, E., da Silva, F.: Electroencephalography, Basic Principles, Clinical Application and Related Fields. Lippincott Williams & Wilkins (2005)

    Google Scholar 

  19. Vialatte, F., Maurice, M., Dauwels, J., Cichocki, A.: Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog. Neurobiol. 90(4), 418–438 (2010)

    Article  Google Scholar 

  20. Felix, L.: Detecção objetiva de respostas multivariável aplicado ao eletroencefalograma e a potenciais evocados, Master’s teses, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil (2004)

    Google Scholar 

  21. Wu, Z., Lai, Y., Xia, Y., Wu, D., Yao, D.: Stimulator selection in SSVEP based BCI. Med. Eng. Phys. 30(8), 1079–1088 (2008). Special Issue (part): Bioengineering in Taiwan

    Article  Google Scholar 

  22. Herrmann, C.: Human EEG responses to 1–100 HZ flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 137(3), 346–353 (2001)

    Article  Google Scholar 

  23. Zhang, Y., Jin, J., Qing, X., Wang, B., Wang, X.: LASSO based stimulus frequency recognition model for SSVEP BCIs. Biomed. Sig. Process. Control 7(2), 104–111 (2011)

    Article  Google Scholar 

  24. Zhu, D., Bieger, J., Molina, G.G., Aarts, R.M.: A survey of stimulation methods used in SSVEP-based BCIs. Comput. Intell. Neurosci. 12 (2010)

    Google Scholar 

  25. Bakardjian, H., Tanaka, T., Cichochi, A.: Optimization of SSVEP brain response with application to eight-command brain-computer interface. Neurosci. Lett. 469, 34–38 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Antônio Abdalla Júnior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdalla Júnior, M.A., Cimini Júnior, C.A., Barroso, M.F.S., Félix, L.B. (2017). A Brain Computer Interface Using VEP and MMSC for Driving a Mechanical Arm. In: Barone, D., Teles, E., Brackmann, C. (eds) Computational Neuroscience. LAWCN 2017. Communications in Computer and Information Science, vol 720. Springer, Cham. https://doi.org/10.1007/978-3-319-71011-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71011-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71010-5

  • Online ISBN: 978-3-319-71011-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics