Neuro-evolutionary Neural Network for the Estimation of Melting Point of Ionic Liquids

  • Jorge A. Cerecedo-CordobaEmail author
  • Juan Javier González Barbosa
  • J. David Terán-Villanueva
  • Juan Frausto-Solís
Part of the Studies in Computational Intelligence book series (SCI, volume 749)


Ionic Liquids (ILs) are salts known for their low melting point, wide liquid phase, and their low toxicity. Also, ILs have an extensive range of applications. Choosing the “best” IL for an application requires the prior knowledge of the physicochemical properties of all the existing ILs which is currently inadequate, furthermore, the synthesis of ILs is generally expensive and time-consuming; thus, a large-scale study is infeasible. Therefore, an estimation system of the melting points could solve partially this problem, the estimation is complex since the ILs exhibit unconventional behavior and the information available may be inaccurate. This paper presents a neuro-evolution neural network for the estimation of the melting point of ILs.


Ionic liquids Neuro-evolution QSPR Melting point 



The authors would like to acknowledge with appreciation and gratitude to CONACYT, TECNM and PRODEP. Also, acknowledge to Laboratorio Nacional de Tecnologías de la Información in the Instituto Tecnológico de Ciudad Madero for the access to the cluster. This work has been partial supported by CONACYT Project 254498. Jorge A. Cerecedo-Cordoba and J. David Terán-Villanueva would like to thank the supports 434694 and 177007.


  1. 1.
    A.R. Katritzky, A. Lomaka, R. Petrukhin, R. Jain, M. Karelson, A.E. Visser, R.D. Rogers, QSPR correlation of the melting point for pyridinium bromides, potential ionic liquids. J. Chem. Inf. Comput. Sci. 42(1), 71–74 (2002)CrossRefGoogle Scholar
  2. 2.
    P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, vol. 1, no. 10 (Wiley, 2008)Google Scholar
  3. 3.
    M. Alvarez-Guerra, P. Luis, A. Irabien, Modelo de contribución de grupos para la estimación de la ecotoxicidad de líquidos iónicos. Afinidad 68(551), 20–24 (2011)Google Scholar
  4. 4.
    J.O. Valderrama, R.A. Campusano, Melting properties of molten salts and ionic liquids. Chemical homology, correlation, and prediction. C. R. Chim. 19(5), 654–664 (2016)CrossRefGoogle Scholar
  5. 5.
    G. Carrera, J. Aires-de-Sousa, Estimation of melting points of pyridinium bromide ionic liquids with decision trees and neural networks. Green Chem. 7(1), 20 (2004)CrossRefGoogle Scholar
  6. 6.
    R. Bini, C. Chiappe, C. Duce, A. Micheli, A. Starita, R. Solaro, M.R. Tine, Ionic liquids: prediction of their melting points by a recursive neural network model. Green Chem. 10, 306–309 (2008)CrossRefGoogle Scholar
  7. 7.
    S. Trohalaki, R. Pachter, Prediction of melting points for ionic liquids. QSAR Comb. Sci. 24(4), 485–490 (2005)CrossRefGoogle Scholar
  8. 8.
    N. Sun, X. He, K. Dong, X. Zhang, X. Lu, H. He, S. Zhang, Prediction of the melting points for two kinds of room temperature ionic liquids. Fluid Phase Equilib. 246(1–2), 137–142 (2006)CrossRefGoogle Scholar
  9. 9.
    A. Varnek, N. Kireeva, I.V Tetko, I.I. Baskin, V.P. Solov’ev, Exhaustive QSPR studies of a large diverse set of ionic liquids:  how accurately can we predict melting points? J. Chem. Inf. Mod. 47(3), pp. 1111–1122 (2007)Google Scholar
  10. 10.
    G. Deyfus, Neural Networks (2004)Google Scholar
  11. 11.
    B. Kosko, Neuronal Networks and Fuzzy Systems (1992)Google Scholar
  12. 12.
    C. Fyfe, Artificial neural networks and information theory. 1–204 (2000)Google Scholar
  13. 13.
    S. Zhang, X. Lu, Q. Zhou, X. Li, X. Zhang, S. Li, Ionic Liquids Physicochemical Properties (2009)Google Scholar
  14. 14.
    ChemAxon, MarvinSketch (JChem Base) version 16.8.8, (2016)
  15. 15.
    C.W. Yap, PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 32(7), 1466–1474 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Riedmiller, Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms. Computer Standards and Interfaces 16(3), 265–278 (1994)CrossRefGoogle Scholar
  17. 17.
    K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRefGoogle Scholar
  18. 18.
    J. Heaton, Encog: library of interchangeable machine learning models for java and C#. J. Mach. Learn. Res. 16, 1243–1247 (2015)MathSciNetzbMATHGoogle Scholar
  19. 19.
    J.O. Valderrama, R.E. Rojas, Redes Neuronales Artificiales como Herramienta para detectardatos Erróneos de Temperatura de Fusión de Líquidos Iónicos, in XXVI Congreso Interamericano de Ing. Química (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jorge A. Cerecedo-Cordoba
    • 1
    Email author
  • Juan Javier González Barbosa
    • 1
  • J. David Terán-Villanueva
    • 1
  • Juan Frausto-Solís
    • 1
  1. 1.TecNM/Instituto Tecnológico de Ciudad MaderoCiudad MaderoMéxico

Personalised recommendations