Advertisement

Differential Evolution Algorithm with Interval Type-2 Fuzzy Logic for the Optimization of the Mutation Parameter

  • Patricia Ochoa
  • Oscar CastilloEmail author
  • José Soria
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 749)

Abstract

In this paper we propose using interval type-2 fuzzy logic for the optimization of parameters the form dynamic using the Differential Evolution algorithm. For this particular work we use Benchmark mathematical functions for the experiments that were performed adhering to the rules of the competition for the IEEE Congress on Evolutionary Computation (CEC) benchmark set of 2015. We are presenting a comparison against the winning paper of the competition IEEE Congress on Evolutionary Computation (CEC) to verify how good the proposed method Fuzzy Differential Evolution algorithm really is.

Keywords

Differential Evolution algorithm Fuzzy Differential Evolution Type-2 fuzzy logic 

References

  1. 1.
    A. Al-Dujaili, K. Subramanian, S. Suresh, HumanCog: a cognitive architecture for solving optimization problems, in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, May 2015), pp. 3220–3227Google Scholar
  2. 2.
    N. Awad, M.Z. Ali, R.G. Reynolds, A differential evolution algorithm with success-based parameter adaptation for CEC2015 learning-based optimization, in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, May 2015), pp. 1098–1105Google Scholar
  3. 3.
    D. Aydın, T. Stutzle, A configurable generalized artificial bee colony algorithm with local search strategies, in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, May 2015), pp. 1067–1074Google Scholar
  4. 4.
    O. Castillo, H. Neyoy, J. Soria, P. Melin, F. Valdez, A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot. Appl. Soft Comput. 28, 150–159 (2015)CrossRefGoogle Scholar
  5. 5.
    O. Castillo, P. Melin, Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach. Appl. Soft Comput. 3(4), 363–378 (2003)CrossRefGoogle Scholar
  6. 6.
    Q. Chen, B. Liu, Q. Zhang, J.J. Liang, P.N. Suganthan, B.Y. Qu, Problem definition and evaluation criteria for CEC 2015 special session and competition on bound constrained single-objective computationally expensive numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, China and Nanyang Technological University, Singapore, Technical report (2014)Google Scholar
  7. 7.
    L. Chen, C. Peng, H.L. Liu, S. Xie, An improved covariance matrix leaning and searching preference algorithm for solving CEC 2015 benchmark problems, in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, May 2015), pp. 1041–1045Google Scholar
  8. 8.
    S.M. Guo, J.S.H. Tsai, C.C. Yang, P.H. Hsu, A self-optimization approach for L-SHADE incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set. In 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, May 2015), pp. 1003–1010Google Scholar
  9. 9.
    X. Li, Decomposition and cooperative coevolution techniques for large scale global optimization. In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation (ACM, New York, July 2014), pp. 819–838Google Scholar
  10. 10.
    J.J. Liang, L. Guo, R. Liu, B.Y. Qu, A self-adaptive dynamic particle swarm optimizer, in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, May 2015), pp. 3206–3213Google Scholar
  11. 11.
    R. Martínez-Soto, O. Castillo, L.T. Aguilar, Type-1 and Type-2 fuzzy logic controller design using a Hybrid PSO–GA optimization method. Inf. Sci. 285, 35–49 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    P. Melin, O. Castillo, A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition. Appl. Soft Comput. 21, 568–577 (2014)CrossRefGoogle Scholar
  13. 13.
    P. Ochoa, O. Castillo, J. Soria, A fuzzy differential evolution method with dynamic adaptation of parameters for the optimization of fuzzy controllers, in 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW) (IEEE, June 2014), pp. 1–6Google Scholar
  14. 14.
    P. Ochoa, O. Castillo, J. Soria, Differential evolution with dynamic adaptation of parameters for the optimization of fuzzy controllers, in Recent Advances on Hybrid Approaches for designing intelligent systems (Springer International Publishing, 2014), pp. 275–288Google Scholar
  15. 15.
    F. Olivas, F. Valdez, O. Castillo, P. Melin, Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft. Comput. 20(3), 1057–1070 (2016)CrossRefGoogle Scholar
  16. 16.
    F. Olivas, O. Castillo, Particle swarm optimization with dynamic parameter adaptation using fuzzy logic for benchmark mathematical functions, in Recent Advances on Hybrid Intelligent Systems (Springer, Berlin, 2013), pp. 247–258Google Scholar
  17. 17.
    C. Peraza, F. Valdez, O. Castillo, A Harmony search algorithm comparison with genetic algorithms, in Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics (Springer International Publishing, 2015), pp. 105–123Google Scholar
  18. 18.
    C. Peraza, F. Valdez, O. Castillo, Fuzzy control of parameters to dynamically adapt the HS algorithm for optimization, in Fuzzy Information Processing Society (NAFIPS) held jointly with 2015 5th World Conference on Soft Computing (WConSC), 2015 Annual Conference of the North American (IEEE, New York, Aug 2015), pp. 1–6Google Scholar
  19. 19.
    R. Poláková, J. Tvrdík, P. Bujok, Cooperation of optimization algorithms: a simple hierarchical model, in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, May 2015), pp. 1046–1052Google Scholar
  20. 20.
    K. Price, R.M. Storn, J.A. Lampinen, in Differential Evolution: A Practical Approach to Global Optimization (Springer Science & Business Media, 2006)Google Scholar
  21. 21.
    J.L. Rueda, I. Erlich, Testing MVMO on learning-based real-parameter single objective benchmark optimization problems, in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, May 2015), pp. 1025–1032Google Scholar
  22. 22.
    K.M. Sallam, R.A. Sarker, D.L. Essam, S.M. Elsayed, Neurodynamic differential evolution algorithm and solving CEC2015 competition problems, in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, May 2015), pp. 1033–1040Google Scholar
  23. 23.
    R. Storn, On the usage of differential evolution for function optimization, in Fuzzy Information Processing Society, 1996. NAFIPS. 1996 Biennial Conference of the North American (IEEE, New York, June 1996), pp. 519–523Google Scholar
  24. 24.
    R. Storn, K. Price, Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, vol. 3 (ICSI, Berkeley, 1995)zbMATHGoogle Scholar
  25. 25.
    R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for differential evolution, in 2013 IEEE Congress on Evolutionary Computation (IEEE, New York, June 2013), pp. 71–78Google Scholar
  26. 26.
    F. Valdez, P. Melin, O. Castillo, Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making, in IEEE International Conference on Fuzzy Systems (2009), pp. 2114–2119Google Scholar
  27. 27.
    F. Valdez, P. Melin, O. Castillo, Evolutionary method combining particle swarm optimisation and genetic algorithms using fuzzy logic for parameter adaptation and aggregation: the case neural network optimisation for face recognition. Int. J. Artif. Intell. Soft Comput. 2(1–2), 77–102 (2010)CrossRefGoogle Scholar
  28. 28.
    F. Valdez, P. Melin, O. Castillo, An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Appl. Soft Comput. 11(2), 2625–2632 (2011)CrossRefGoogle Scholar
  29. 29.
    C. Yu, L.C. Kelley, Y. Tan, Dynamic search fireworks algorithm with covariance mutation for solving the CEC 2015 learning based competition problems, in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, May 2015), pp. 1106–1112Google Scholar
  30. 30.
    Y.J. Zheng, X.B. Wu, Tuning maturity model of ecogeography-based optimization on CEC 2015 single-objective optimization test problems, in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, May 2015), pp. 1018–1024Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations