Advertisement

The Deployment of Unmanned Aerial Vehicles at Optimized Locations to Provide Communication in Natural Disasters

  • Gabriela L. Rodríguez-Cortés
  • Anabel Martínez-Vargas
  • Oscar Montiel-RossEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 749)

Abstract

Our economy and society depend on the continued operation of the internet and other networks. During a natural disaster, the communication infrastructure is affected and as a consequence interrupted. In such scenario, there is a vital need to maintain communication between first responders and victims. Recently, the use of Unmanned Aerial Vehicles (UAVs) has been proposed to deliver broadband connectivity since they are deployed quickly as aerial base stations to the affected area. However, figuring out the optimized locations of the UAVs is a difficult task due to a large number of combinations. To solve this, we apply a genetic algorithm with steady-state population model and binary representation with the aim of improving the network coverage.

Keywords

Unmanned Aerial Vehicles Genetic algorithms Steady-state model Public safety communications 

References

  1. 1.
    R. Miller, Hurricane Katrina: communications & infrastructure impacts. (2006)Google Scholar
  2. 2.
    T. Sakano, Z.M. Fadlullah, T. Ngo, H. Nishiyama, M. Nakazawa, F. Adachi, N. Kato, A. Takahara, T. Kumagai, H. Kasahara, S. Kurihara, Disaster-resilient networking: a new vision based on movable and deployable resource units. IEEE Netw. 27, 40–46 (2013)CrossRefGoogle Scholar
  3. 3.
    J.P. Cangialosi, T.B. Kimberlain, Hurricane Odile (EP152014). National Hurricane Center (2015)Google Scholar
  4. 4.
    A. Merwaday, I. Guvenc, UAV assisted heterogeneous networks for public safety communications, in 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). pp. 329–334 (2015)Google Scholar
  5. 5.
    A. Kumbhar, F. Koohifar, İ. Güvenç, B. Mueller, A survey on legacy and emerging technologies for public safety communications. IEEE Commun. Surv. Tutor. 19, 97–124 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Chandrasekharan, K. Gomez, A. Al-Hourani, S. Kandeepan, T. Rasheed, L. Goratti, L. Reynaud, D. Grace, I. Bucaille, T. Wirth, S. Allsopp, Designing and implementing future aerial communication networks. IEEE Commun. Mag. 54, 26–34 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Zeng, R. Zhang, T.J. Lim, Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54, 36–42 (2016)CrossRefGoogle Scholar
  8. 8.
    E.-G. Talbi, Metaheuristics: from design to implementation. (Wiley, 2009)Google Scholar
  9. 9.
    J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence (MIT Press, Cambridge, MA, USA, 1992)Google Scholar
  10. 10.
    X. Li, D. Guo, H. Yin, G. Wei, Drone-assisted public safety wireless broadband network, in 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). pp. 323–328 (2015)Google Scholar
  11. 11.
    B.-S. Park, J.-G. Yook, H.-K. Park, The determination of base station placement and transmit power in an inhomogeneous traffic distribution for radio network planning, in Proceedings IEEE 56th Vehicular Technology Conference, vol. 4, pp. 2051–2055 (2002)Google Scholar
  12. 12.
    C.A. Brizuela, E. Gutiérrez, An experimental comparison of two different encoding schemes for the location of base stations in cellular networks, in Applications of Evolutionary Computing, ed. by S. Cagnoni, C.G. Johnson, J.J.R. Cardalda, E. Marchiori, D.W. Corne, J.-A. Meyer, J. Gottlieb, M. Middendorf, A. Guillot, G.R. Raidl, E. Hart (Springer, Berlin Heidelberg, 2003), pp. 176–186CrossRefGoogle Scholar
  13. 13.
    Y.S. Choi, K.S. Kim, N. Kim, The displacement of base station in mobile communication with genetic approach. EURASIP J. Wirel. Commun. Netw. 2008, 580761 (2008)CrossRefGoogle Scholar
  14. 14.
    A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing (Springer Berlin Heidelberg, Berlin Heidelberg, 2015)CrossRefzbMATHGoogle Scholar
  15. 15.
    S.S. Haykin, M. Moher, in Modern Wireless Communications (Pearson Prentice Hall, 2005)Google Scholar
  16. 16.
    D. Whitley, A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994)CrossRefGoogle Scholar
  17. 17.
    D. Whitley, J. Kauth, Genitor: a different genetic algorithm, in Rocky Mountain Conference on Artificial Intelligence (Denver, CO, 1988)Google Scholar
  18. 18.
    N. Holtschulte, M. Moses, Should every man be an island? Presented at the GECCO 2013, Amsterdam, The Netherlands (2013)Google Scholar
  19. 19.
    S. Sumathi, S. Paneerselvam, Computational Intelligence Paradigms: Theory & Applications Using MATLAB (CRC Press Inc, Boca Raton, FL, USA, 2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gabriela L. Rodríguez-Cortés
    • 1
  • Anabel Martínez-Vargas
    • 1
  • Oscar Montiel-Ross
    • 2
    Email author
  1. 1.Universidad Politécnica de PachucaZempoalaMexico
  2. 2.Instituto Politécnico Nacional, Centro de Investigación y Desarrollo de Tecnología Digital (IPN-CITEDI)TijuanaMexico

Personalised recommendations