Advertisement

A Grey Mathematics Approach for Evolutionary Multi-objective Metaheuristic of Project Portfolio Selection

  • Fausto BalderasEmail author
  • Eduardo Fernandez
  • Claudia Gomez-Santillan
  • Laura Cruz-Reyes
  • Nelson Rangel-Valdez
  • Maria Lucila Morales-Rodríguez
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 749)

Abstract

The aim of this chapter is to present the results of the comparison between the solutions obtained with the grey mathematics and the solutions obtained without the grey mathematics. The grey mathematics is used to represent the uncertainty associate with real-life decision-making. We define a multi-objective algorithm to perform the comparison between algorithms. The results obtained show that the approach using grey mathematics outperforms the results without grey mathematics.

Keywords

Project portfolio selection Decision problem Uncertainty Grey systems 

Notes

Acknowledgements

This work has been partially supported by the following CONACyT projects: a) Fronteras de la Ciencias Project 1340; b) Consolidation National Lab Project 280712; c) Projects [236154, 269890]; d) Project 280081 Red Temática para el apoyo a la Decisión y Optimización Inteligente de Sistemas Complejos y de Gran Escala (OPTISAD) Universidad Autónoma de Nuevo León; and, e) Project 3058 from the program Cátedras CONACyT.

References

  1. 1.
    A. Salo, J. Keisler, A. Morton, An invitation to portfolio decision analysis, in Portfolio Decision Analysis (Springer, New York, 2011), pp. 3–27Google Scholar
  2. 2.
    K. Deb, A. Pratap, S. Agarwal, T.A.M.T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  3. 3.
    D. Ju-Long, Control problems of grey systems. Syst. Control Lett. 1(5), 288–294 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    B. Oztaysi, A decision model for information technology selection using AHP integrated TOPSIS-Grey: the case of content management systems. Knowl.-Based Syst. 70, 44–54 (2014)CrossRefGoogle Scholar
  5. 5.
    D. Julong, Introduction to grey system theory. J. Grey Syst. 1(1), 1–24 (1989)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Y.H. Lin, P.C. Lee, H.I. Ting, Dynamic multi-attribute decision making model with grey number evaluations. Expert Syst. Appl. 35(4), 1638–1644 (2008)CrossRefGoogle Scholar
  7. 7.
    D. Yamaguchi, G.D. Li, K. Mizutani, T. Akabane, M. Nagai, M. Kitaoka, On the generalization of grey relational analysis. J. Grey Syst. 9(1), 23–33 (2006)Google Scholar
  8. 8.
    J.R. Shi, S.Y. Liu, W.T. Xiong, A new solution for interval number linear programming. Syst. Eng.-Theory Pract. 2, 016 (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Fausto Balderas
    • 1
    Email author
  • Eduardo Fernandez
    • 2
  • Claudia Gomez-Santillan
    • 1
  • Laura Cruz-Reyes
    • 1
  • Nelson Rangel-Valdez
    • 1
  • Maria Lucila Morales-Rodríguez
    • 1
  1. 1.Tecnologico Nacional de Mexico, Instituto Tecnologico de Ciudad MaderoCiudad MaderoMexico
  2. 2.Universidad Autónoma de SinaloaSinaloaMexico

Personalised recommendations