Modeling and Project Portfolio Selection Problem Enriched with Dynamic Allocation of Resources

  • Daniel A. Martínez-VegaEmail author
  • Laura Cruz-Reyes
  • Claudia Gomez-Santillan
  • Nelson Rangel-Valdez
  • Gilberto Rivera
  • Alejandro Santiago
Part of the Studies in Computational Intelligence book series (SCI, volume 749)


The problems of the real world, within which the variable time is present, have involved continuous changes. These problems usually change over time in their objectives, constraints or parameters. Therefore, it is necessary to carry out a readjustment when calculating their solution. This paper proposes an original way of approaching the project portfolio selection problem enriched with dynamic allocation of resources. A new mathematical model is proposed formulating this multi-objective optimization problem, as well as its exact and approximate solution, the latter based on four of the algorithms that in our opinion stand out in the state of the art: Archive-Based hybrid Scatter Search, MultiObjective Cellular, Nondominated Sorting Genetic Algorithm II and Strength Pareto Evolutionary Algorithm 2. We experimentally demonstrate the benefits of our proposal and leave open the possibility that its study will apply to large-scale problems.


Dynamic allocation of resources Dynamic portfolio Enriched problem JMetal ABYSS MOCell NSGA-II SPEA 2 


  1. 1.
    K. Weicker, Evolutionary algorithms and dynamic optimization problems (Der Andere Verlag, Berlin, 2003)Google Scholar
  2. 2.
    C.P.A. Santos, I.A. Lopez-Sanchez. Portfolio Generation Based on a Dynamic Allocation of Resources. U.S. Patent Application No. 14/485,339 (2014)Google Scholar
  3. 3.
    J. Pajares, A. López, A. Araúzo, C. Hernández, Project Portfolio Management, selection and scheduling. Bridging the gap between strategy and operations, in XIII Congreso de Ingeniería de Organización (pp. 1421–1429) (2009, April)Google Scholar
  4. 4.
    A.J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J.J. Durillo, A. Beham, AbYSS: adapting scatter search to multiobjective optimization. IEEE Trans. Evol. Comput. 12(4), 439–457 (2008)Google Scholar
  5. 5.
    A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, E. Alba, Design issues in a multiobjective cellular genetic algorithm, in International Conference on Evolutionary Multi-Criterion Optimization. (Springer Berlin Heidelberg, 2007, March) (pp. 126–140)Google Scholar
  6. 6.
    K. Deb, A. Pratap, S. Agarwal, T.A.M.T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)Google Scholar
  7. 7.
    E. Zitzler, M. Laumanns, L. Thiele, SPEA2: improving the strength Pareto evolutionary algorithm (2001)Google Scholar
  8. 8.
    A. Nebro, F. Luna, B. Dorronsoro, J. Durillo, Un algoritmomultiobjetivobasadoen búsqueda dispersa. Quinto Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB 2007), pp. 175–182 (2007)Google Scholar
  9. 9.
    K.R. Davis, R. Davis, P.G. Mckeown, Modelos cuantitativos para administración. Grupo Editorial Iberoamérica (1986)Google Scholar
  10. 10.
    P. Sánchez, Propuesta de anteproyecto de tesis: Nuevos métodos de incorporación de preferencias en metaheurísticas multiobjetivo para la solución de problemas de cartera de proyectos (2012)Google Scholar
  11. 11.
    H. Jain, K. Deb, An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization, in International Conference on Evolutionary Multi-Criterion Optimization (Springer Berlin Heidelberg, 2013, March) (pp. 307–321)Google Scholar
  12. 12.
    J.J. Durillo, A.J. Nebro, jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw, 42(10), 760–771 (2011)Google Scholar
  13. 13.
    I. Rodríguez-Fdez, A. Canosa, M. Mucientes, A. Bugarín, STAC: a web platform for the comparison of algorithms using statistical tests. in Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on (2015, August) (pp. 1–8). IEEEGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Daniel A. Martínez-Vega
    • 1
    Email author
  • Laura Cruz-Reyes
    • 2
  • Claudia Gomez-Santillan
    • 2
  • Nelson Rangel-Valdez
    • 3
  • Gilberto Rivera
    • 4
  • Alejandro Santiago
    • 1
    • 5
  1. 1.Tecnológico Nacional de México/Instituto Tecnológico de TijuanaTijuanaMexico
  2. 2.Tecnológico Nacional de México/Instituto Tecnológico de Ciudad MaderoCiudad MaderoMexico
  3. 3.CONACYT, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad MaderoCiudad MaderoMexico
  4. 4.Universidad Autónoma de Ciudad JuárezCiudad JuárezMexico
  5. 5.Universidad de CádizCádizSpain

Personalised recommendations