Advertisement

A New Model Based on a Fuzzy System for Arterial Hypertension Classification

  • Martha Pulido
  • Patricia MelinEmail author
  • German Prado-Arechiga
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 749)

Abstract

In this paper, a method is proposed for classification of the blood pressure of patient (systolic pressure and diastolic pressure). This technique consists on a creating fuzzy system for the classification of the arterial hypertension. The fundamental idea of this paper on achieving Classification of the arterial hypertension of a patient so that the doctor can provide a more accurate Diagnosis, Prevent and control of risk factors that may effect of the patient.

Keywords

Systolic Diastolic Classification Fuzzy system Patient Arterial hypertension 

Notes

Acknowledgements

We would like to express our gratitude to the CONACYT, Tijuana Institute of Technology for the facilities and resources granted for the development of this research.

References

  1. 1.
    U. Keil, K. Kuulasmaa, The project: geographical variation in the major risk factors of coronary heart disease in men and women aged 35–64 years. Rapp Trimest Statis Sanit Mond 41, 115–139 (1988)Google Scholar
  2. 2.
    S. Mendis, L.H. Lindholm, G. Mancia, J. Whiwort, M. Alderman et al., World Health Organization (WHO) and International Society of Hypertension (ISH) risk prediction charts: assessment of cardiovascular risk for prevention and control of cardiovascular disease in low an middle income countries. J Hypertens. 25(8), 1578–1582 (2007)CrossRefGoogle Scholar
  3. 3.
    L.A. Zadeh, Knowledge representation in Fuzzy Logic. IEEE Trans. Knowl. Data Eng. 1, 89 (1989)CrossRefGoogle Scholar
  4. 4.
    R.L. Sacco, The 2006 William Feinberg lecture: shifting the paradigm from stroke to global vascular risk estimation. Stroke 38, 1980–1987Google Scholar
  5. 5.
    G. Beevers, G.Y.H. Lip, E. O’Brien, Blood pressure measurement part I sphygmomanometry: factors common to all techniques. Br. Med. J. 322, 981 (2001)Google Scholar
  6. 6.
    P.M. Kearney, M. Whelton, K. Reynaldos, P.K. Whelton, Wordwide prevalence of hypertension: a systematic rewiew. J. Hypertens. 22(1), 21–24 (2004)CrossRefGoogle Scholar
  7. 7.
    R.B. Agustino, M.W. Russel, D.M. Huse, C. Ellison, H. Silbershatz et al, Primary and subsequent coronary risk appraisal: new results the Framingham study. Am. Heart J. 139, 272–281 (2000)Google Scholar
  8. 8.
    R. Samant, R. Srikantha, Evaluation of artificial neural networks in prediction of essential hypertension. Int. J. Comput. Appl. 14, 11–21 (2013)Google Scholar
  9. 9.
    M. Pulido, P. Melin, G. Prado-Arechiga, A new method based on modular neural network for arterial hypertension diagnosis, in Nature-Inspired Design of Hybrid Intelligent Systems, Springer, Ed., Springer, Germany, 2017) pp. 195–205Google Scholar
  10. 10.
    P. Melin, G. Prado-Arechiga, M. Pulido, I. Miramontes, Classification using a computational model based on artificial modular neural networks. J. Hypertens. (2017)Google Scholar
  11. 11.
    P. Melin, G. Prado-Arechiga, M. Pulido, I. Miramontes, Classification using a computational model base on artificial modular neural networks. J. Hypertens. (2016)Google Scholar
  12. 12.
    P. Melin, M. Pulido, I. Miramontes, G. Prado-Arechiga, A new method based on artificial modular neural networks for classification of arterial. J. Hypertens. (2016)Google Scholar
  13. 13.
    J.C. Guzman, P. Melin, G. Prado-Arechiga, Neuro-fuzzy hybrid model for the diagnosis of blood pressure, in Nature-Inspired Design of Hybrid Intelligent Systems, Springer, Ed. (Springer, Germany, 2017), pp. 573–582Google Scholar
  14. 14.
    N. Shehu, S.U. Gulumbe, H.M. Liman, Comparative study between conventional statistical methods and neural networks in predicting hypertension status. Advances in Agriculture, Sciences and Engineering Research (2013)Google Scholar
  15. 15.
    D.L. Simel, Approach to the patient: history and physical examination, in Goldman’s Cecil Medicine L. Goldman, A.I. Schafer, eds.Google Scholar
  16. 16.
    X.Y. Djam, Y.H. Kimbi, Fuzzy expert system for the management of hypertension. Pac. J. Sci. Technol. 11, 1 (2011)Google Scholar
  17. 17.
    Harrison Principles of Internal Medicine, Tachyarrhythmias 6th edn., Chapter 214. (McGraw-Hill, 2016)Google Scholar
  18. 18.
    A.A. Abdullah, Z. Zakaria, N.F. Mohammad, Design and development of Fuzzy Expert System for diagnosis of hypertension, in International Conference on Intelligent Systems, Modelling and Simulation, vol. 56, no. 5–6 (Univeristy Malaysia Perlis, Jejawi, Malaysia, IEEE, 2011), pp. 26–30Google Scholar
  19. 19.
    A.A. Abdullah, Z. Zakaria, N.F. Mohammad, Design and development of Fuzzy Expert System for diagnosis of hypertension, in International Conference on Intelligent Systems, Modelling and Simulation, vol. 10 (IEEE, 2011), pp. 131–141Google Scholar
  20. 20.
    Accord Study Group, Effects of intensive blood-pressure control in type 2 diabetes. N. Engl. J. Med. 2010(362), 1575–1585 (2010)Google Scholar
  21. 21.
    E.J. Battegay, G.Y. Lip, G.L. Bakris, Hypertension principles and practice (Taylor & Francis, Boca Raton, FL, 2005)CrossRefGoogle Scholar
  22. 22.
    T. Pickering, Shimbo P. Daichi, D. Haas, Ambulatory blood-pressure monitoring. N. Engl. J. Med. 354(22), 2368–2374 (2006)CrossRefGoogle Scholar
  23. 23.
    A. Sombra, F. Valdez, P. Melin, O. Castillo, A new gravitational search algorithm using fuzzy logic to parameter adaptation, in IEEE Congress on Evolutionary Computation (Cancun, México, 2013), pp. 1068–1074Google Scholar
  24. 24.
    F. Valdez, P. Melin, O. Castillo, Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making, in IEEE International Conference on Fuzzy Systems (2009), pp. 2114–2119Google Scholar
  25. 25.
    O. Castillo, P. Melin, E. Ramírez, J. Soria, Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system. Expert Syst. Appl. 39(3), 2947–2955Google Scholar
  26. 26.
    L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach. Appl. Soft Comput. 3(3), 209–219Google Scholar
  27. 27.
    P. Melin, O. Castillo, in Modelling, Simulation and Control of Non-Linear Dynamical Systems: An Intelligent Approach Using Soft Computing And Fractal Theory (CRC Press, 2001)Google Scholar
  28. 28.
    P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electron. 48(5), 951–955Google Scholar
  29. 29.
    G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, in The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ’05, pp. 230–235Google Scholar
  30. 30.
    O. Castillo, P. Melin, Design of intelligent systems with interval type-2 fuzzy logic, in Type-2 Fuzzy Logic: Theory and Applications, pp. 53–76Google Scholar
  31. 31.
    P. Melin, C.I. Gonzalez, J.R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Martha Pulido
    • 1
  • Patricia Melin
    • 1
    Email author
  • German Prado-Arechiga
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations