Advertisement

Parallel Bacterial Potential Field Algorithm for Path Planning in Mobile Robots: A GPU Implementation

  • Ulises Orozco-RosasEmail author
  • Oscar Montiel
  • Roberto Sepúlveda
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 749)

Abstract

Path planning is a fundamental task in autonomous mobile robot navigation and one of the most computationally intensive tasks. In this work, a parallel version of the bacterial potential field (BPF) method for path planning in mobile robots is presented. The BPF is a hybrid algorithm, which makes use of a bacterial evolutionary algorithm (BEA) with the artificial potential field (APF) method, to take advantage of intelligent and classical methods. The parallel bacterial potential field (parallel-BPF) algorithm is implemented on a graphics processing unit (GPU) to speed up the path planning computation in mobile robot navigation. Simulation results to validate the analysis and implementation are provided; the experiments were specially designed to show the effectiveness and the efficiency of the parallel-BPF algorithm.

Keywords

Bacterial potential field Path planning Mobile robots GPU 

Notes

Acknowledgements

We thank Instituto Politécnico Nacional (IPN), the Comisión de Operación y Fomento de Actividades Academicas of IPN (COFAA), and the Mexican National Council of Science and Technology (CONACYT) for supporting our research activities.

References

  1. 1.
    O. Montiel, U. Orozco-Rosas, R. Sepúlveda, Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles. Expert Syst. Appl. 42(12), 5177–5191 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Candeloro, A.M. Lekkas, A.J. Sørensen, A Voronoi-diagram-based dynamic path-planning system for underactuated marine vessels. Control Eng. Pract. 61, 41–54 (2017)CrossRefGoogle Scholar
  3. 3.
    P. Muñoz, M.D. R-Moreno, B. Castaño, 3Dana: a path planning algorithm for surface robotics. Eng. Appl. Artif. Intell. 60, 175–192 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Garrido, L. Moreno, F. Martín, D. Álvarez, Fast marching subjected to a vector field-path planning method for mars rovers. Expert Syst. Appl. 78, 334–346 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Chen, J. Yu, X. Su, G. Luo, Path planning for multi-UAV formation. J. Intell. Rob. Syst. 77(1), 229–246 (2015)Google Scholar
  6. 6.
    W. Kowalczyk, M. Przybyla, K. Kozlowski, Set-point control of mobile robot with obstacle detection and avoidance using navigation function—experimental verification. J. Intell. Rob. Syst. 85(3), 539–552 (2017)CrossRefGoogle Scholar
  7. 7.
    N.E. Nawa, T. Furuhashi, Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Trans. Fuzzy Syst. 7(5), 608–616 (1999)CrossRefGoogle Scholar
  8. 8.
    N.E. Nawa, T. Hashiyama, T. Furuhashi, Y. Uchikawa, A study on fuzzy rules discovery using pseudo-bacterial genetic algorithm with adaptive operator. Paper presented at the IEEE international conference on evolutionary computation, Indianapolis, IN, 13–16 Apr 1997 (1997)Google Scholar
  9. 9.
    J. Botzheim, L.T. Kóczy, Model identification by bacterial optimization. National Scientific Research Fund, Budapest, Hungary. https://pdfs.semanticscholar.org/b717/7925a514452b03d9802a7a6390b1910db30a.pdf. Accessed 05 Apr 2017 (2004)
  10. 10.
    M.F. Rad, F. Akbari, A.J. Bakht, Implementation of common genetic and bacteriological algorithms in optimization testing data in mutation testing. Paper presented at the 2010 international conference on computational intelligence and software engineering, Wuhan, 10–12 Dec 2010 (2010)Google Scholar
  11. 11.
    B. Baudry, F. Fleurey, J.M. Jézéquel, Y.L. Traon, From genetic to bacteriological algorithms for mutation-based testing. Softw. Test. Verif. Reliab. 15(2), 73–96 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Botzheim, L. Gál, L.T. Kóczy, Fuzzy rule base model identification by bacterial memetic algorithms, in Recent Advances in Decision Making, vol. 222, ed. by E. Rakus-Andersson, R.R. Yager, N. Ichalkarange, L.C. Jain (Springer, Berlin, 2009), pp. 21–43Google Scholar
  13. 13.
    J. Botzheim, Y. Toda, N. Kubota, Path planning for mobile robots by bacterial memetic algorithm. Paper presented at the 2011 IEEE workshop on robotic intelligence in informationally structured space, Paris, 11–15 Apr 2011 (2011)Google Scholar
  14. 14.
    O. Kathib, Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)CrossRefGoogle Scholar
  15. 15.
    Q. Zhang, D. Chen, T. Chen, An obstacle avoidance method of soccer robot based on evolutionary artificial potential field. Procedia 16, 1792–1798 (2012). Paper presented at the 2012 international conference on future energy, environment, and materialsGoogle Scholar
  16. 16.
    V. Sezer, M. Gokasan, A novel obstacle avoidance: “Follow the Gap Method”. Robot. Auton. Syst. 60(9), 1123–1134 (2012)CrossRefGoogle Scholar
  17. 17.
    S.S. Ge, Y.J. Cui, New potential functions for mobile robot path planning. IEEE Trans. Robot. Autom. 16(5), 615–620 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ulises Orozco-Rosas
    • 1
    Email author
  • Oscar Montiel
    • 1
  • Roberto Sepúlveda
    • 1
  1. 1.Centro de Investigación y Desarrollo de Tecnología Digital (IPN-CITEDI), Instituto Politécnico NacionalTijuanaMexico

Personalised recommendations