Advertisement

Impact Study of the Footprint of Uncertainty in Control Applications Based on Interval Type-2 Fuzzy Logic Controllers

  • Emanuel Ontiveros
  • Patricia Melin
  • Oscar CastilloEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 749)

Abstract

Fuzzy control is one of the most important applications of Fuzzy Logic, and with the emergence of Type-2 Fuzzy Logic, now Type-2 Fuzzy Logic Controllers provide the possibility of consider the uncertainty in the controller design, and these results are very useful for noisy environments and with multiple uncertainty sources. However, it is important to identify the relationship between the FOU and noise robustness, observing the behavior of the IT2 FLC with different FOUs in different uncertainty context. The main goal of this paper is to evaluate the impact of the Footprint of Uncertainty (FOU) in the performance of an Interval Type-2 Fuzzy Logic Controllers (IT2 FLC). The experiments considered two plants, evaluating the performance of the same IT2 FLC by changing only the FOU, evaluated in with different noise levels, this in order to find the controller behavior by the variation of the FOU. In addition, we propose to use a heuristic optimization method based on the behavior knowledge and by adjusting the FOU.

Keywords

Fuzzy control Interval Type-2 Fuzzy Logic Footprint of uncertainty 

References

  1. 1.
    C.C. Lee, Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)Google Scholar
  2. 2.
    J. Ahmed, Z. Salam, An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency. Appl. Energy 150, 97–108 (2015)Google Scholar
  3. 3.
    L.A. Zadeh, Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996)Google Scholar
  4. 4.
    E.H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. 121(12), 1585–1588 (1974)Google Scholar
  5. 5.
    H.O. Wang, K. Tanaka, M.F. Griffin, An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)Google Scholar
  6. 6.
    M.S. Masmoudi, N. Krichen, M. Masmoudi, N. Derbel, Fuzzy logic controllers design for omnidirectional mobile robot navigation. Appl. Soft Comput. 49, 901–919 (2016)Google Scholar
  7. 7.
    J. Liu, W. Zhang, X. Chu, Y. Liu, Fuzzy logic controller for energy savings in a smart LED lighting system considering lighting comfort and daylight. Energy Build. 127, 95–104 (2016)Google Scholar
  8. 8.
    J.M. Mendel, R.I.B. John, Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)Google Scholar
  9. 9.
    J.M. Mendel, R.I. John, F. Liu, Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)Google Scholar
  10. 10.
    A.D. Torshizi, M.H.F. Zarandi, H. Zakeri, On type-reduction of type-2 fuzzy sets: a review. Appl. Soft Comput. 27, 614–627 (2015)Google Scholar
  11. 11.
    H. Hagras, Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)Google Scholar
  12. 12.
    O. Castillo, P. Melin, A review on interval type-2 fuzzy logic applications in intelligent control. Inf. Sci. 279, 615–631 (2014)Google Scholar
  13. 13.
    M.E. Abdelaal, H.M. Emara, A. Bahgat, Interval type 2 fuzzy sliding mode control with application to inverted pendulum on a cart. IEEE Int. Conf. Ind. Technol. (ICIT) 2013, 100–105 (2013)Google Scholar
  14. 14.
    U. Farooq, J. Gu, J. Luo, On the interval type-2 fuzzy logic control of ball and plate system. IEEE Int. Conf. Robot. Biomimetics (ROBIO) 2013, 2250–2256 (2013)Google Scholar
  15. 15.
    R. Sepúlveda, O. Montiel, O. Castillo, P. Melin, Embedding a high speed interval type-2 fuzzy controller for a real plant into an FPGA. Appl. Soft Comput. 12(3), 988–998 (2012)Google Scholar
  16. 16.
    H. Sahu, R. Ayyagari, Interval fuzzy type-II controller for the level control of a three tank system. IFAC-PapersOnLine 49(1), 561–566 (2016)Google Scholar
  17. 17.
    I.F. Davoudkhani, M. Akbari, Adaptive speed control of brushless DC (BLDC) motor based on interval type-2 fuzzy logic, in 2016 24th Iranian Conference on Electrical Engineering (ICEE) (2016), pp. 1119–1124Google Scholar
  18. 18.
    M.A. Sanchez, O. Castillo, J.R. Castro, Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Syst. Appl. 42(14), 5904–5914 (2015)Google Scholar
  19. 19.
    O. Castillo, L. Amador-Angulo, J.R. Castro, M. Garcia-Valdez, A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. 354, 257–274 (2016)Google Scholar
  20. 20.
    J. Gosumbonggot, Maximum power point tracking method using perturb and observe algorithm for small scale DC voltage converter. Proc. Comput. Sci. 86, 421–424 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Bounechba, A. Bouzid, K. Nabti, H. Benalla, Comparison of Perturb & Observe and fuzzy logic in maximum power point tracker for PV systems. Energy Proc. 50, 677–684 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Sombra, F. Valdez, P. Melin, O. Castillo, A new gravitational search algorithm using fuzzy logic to parameter adaptation, in IEEE Congress on Evolutionary Computation (Cancun, Mexico 2013), pp. 1068–1074Google Scholar
  23. 23.
    F. Valdez, P. Melin, O. Castillo, Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making, in IEEE International Conference on Fuzzy Systems (2009), pp. 2114–2119Google Scholar
  24. 24.
    G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, in The 14th IEEE International Conference on Fuzzy Systems, 2005 FUZZ’05, pp. 230–235Google Scholar
  25. 25.
    O. Castillo, P. Melin, Design of intelligent systems with interval type-2 fuzzy logic, in Type-2 Fuzzy Logic: Theory and Applications (2008), pp. 53–76Google Scholar
  26. 26.
    O. Castillo, P. Melin, E. Ramírez, J. Soria, Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system. Expert Syst. Appl. 39(3), 2947–2955Google Scholar
  27. 27.
    L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach. Appl. Soft Comput. 3(3), 209–219Google Scholar
  28. 28.
    P. Melin, O. Castillo, in Modelling, Simulation and Control of Non-linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory (CRC Press, 2001)Google Scholar
  29. 29.
    P. Melin, C.I. Gonzalez, J.R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525Google Scholar
  30. 30.
    P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electron. 48(5), 951–955Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Emanuel Ontiveros
    • 1
  • Patricia Melin
    • 1
  • Oscar Castillo
    • 1
    Email author
  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations