Advertisement

Environmental Settings of Study Territories

  • Constantin MoraruEmail author
  • Robyn Hannigan
Chapter
  • 365 Downloads
Part of the Springer Hydrogeology book series (SPRINGERHYDRO)

Abstract

For the estimation of hydrogeochemical vulnerability, representative areas from USA, Germany, and Moldova are characterized environmentally. For the selected areas, general delineation, physiography and climate, soil cover, surface water, geology and hydrogeology, tectonics and paleohydrogeology, and land use are described in details. The natural conditions of groundwater have been provided with a detailed outline.

Keywords

Representative areas from USA Germany and Moldova Environmental setting Groundwater 

References

  1. Arthur, J. K. & Taylor, R. E. (1990). Definition of the geohydrologic framework and preliminary simulation of ground-water flow in the Mississippi embayment aquifer system, Gulf Coastal Plain. U. S. Geological Survey Water-Resources Investigation Report 86-4364, 97p.Google Scholar
  2. Assovskii, G. N. (1954). Ground water of Moldova and its practical significance for water supply (200 p). Russia: Ph.D., Moscow State University (in Russian).Google Scholar
  3. Bobrinsky, B. M. Kaptsan, V. X., & Safarov Y. I. (1965). Paleogeography of Moldova (122 p). Chisinau: Cartea Moldoveneasca (in Russian).Google Scholar
  4. Bobrinsky, B. M., Macarescu, V. S., & Moraru, C. E. (1986). Reflection of various tectonic violations in the helium, macro seismic and hydrogeochemical fields of Moldova. Reports of the U.S.S.R. A. S., Vol. 288, No 5, pp. 1186–1189 (in Russian).Google Scholar
  5. Bobrinsky, V. M., Macarescu, V. S., & Moraru, C. E. (1987). Tectonic factors governing the structure of the helium, macro seismic and hydrochemical regions of Moldovia. Geotectonics, 2(2), 150–160.Google Scholar
  6. Bondaruc, N. T. (1981). Nitrate in Natural water and rocks of Moldova (187 p). Ph.D Dissertation. Russia: Leningrad State University (in Russian).Google Scholar
  7. Boswell, E. H., Moore, G. K., MacCary, L. M., Jeffery, H. G., & et al. (1965). Water resources of the Mississippi Embayment; cretaceous aquifers in the Mississippi embayment with discussions of quality of water. U.S. Geological Survey Professional Paper 448-C, 37.Google Scholar
  8. Boswell, E. H., Cushing, E. M., Hosman, R. L. (1968). Quaternary aquifers in the Mississippi embayment.” U.S. Geological Survey Professional Paper 448-E, 15.Google Scholar
  9. Brahana, J. V., Mesko, T. O., Busby, J. F., & Kraemer, T. F. (1985). Ground-water quality data from the Northern Mississippi embayment; Arkansas, Missouri, Kentucky, Tennessee, and Mississippi. U.S. Geological Survey Open-File Report 85-683, 15 p.Google Scholar
  10. Brahana, J. V., Bradley, M. W., & Dolores, M. (1986). Preliminary delineation and description of the regional aquifers of Tennessee; tertiary aquifer system. U.S. Geological Survey Water-Resources Investigations Report 83–4011, 23 p.Google Scholar
  11. Brahana, J. V., Parks, W. S., Gaydos, M. W. (1987). Quality of water from freshwater aquifers and principal well fields in the Memphis Area, Tennessee. U.S. Geological Survey Water-Resources Investigations Report 87–4052, 22 p.Google Scholar
  12. Brahana, J. V. & Broshears, R. E. (2001). Hydrogeology and Ground-Water Flow in the Memphis and Fort Pillow Aquifers in the Memphis area, Tennessee.” U.S. Geological Survey Water-Resources Investigation Report 89-4131, 56 p.Google Scholar
  13. Coupe, R. H., Manning, M. A., Foreman, W. T., Goolsby, D. A., & Majewski, M. S. (1999). Occurrence of pesticides in rain and air in urban and agricultural areas of Mississippi, April–September, 1995. U.S. Geological Survey Toxic Substances Hydrology Program-Proceedings of the Technical Meeting, Charleston, South Carolina, March 8–12, 1999 (Vols. 2 and 3). U. S. Geological Survey Water-Resources Investigations Report 99-4018B.Google Scholar
  14. Cox, R. T., & Van Arsdale, R. B. (2002). The Mississippi embayment, North America: A first order continental structure generated by cretaceous superplume mantle event. Journal of Geodynamics, 34, 163–176.CrossRefGoogle Scholar
  15. Criner, J. H., & Armstrong, C. A. (1958). Ground-water supply of the Memphis Area. U.S. Geological Survey, Circular, 408, 20.Google Scholar
  16. Criner, J. H., Sun, P. C., Nyman, D. J. (1964). Hydrology of the aquifer system in the Memphis Area, Tennessee.” U.S. Geological Survey Water-Supply Paper 1779–0, 54 p.Google Scholar
  17. Cushing, E. M., Boswell, E. H., & Hosman, R. L. (1964). General geology of the Mississippi embayment. U. S. Geological Survey Professional Paper 448-B, 28 p.Google Scholar
  18. Danich, M. M., & Sobetskii, V. A. (1964). The stratigraphy of sedimentary formations of Moldova (40 p). Chisinau: Cartea Moldoveneasca. (in Russian).Google Scholar
  19. Drumea, A. V. (1961). Tectonics of the Moldovskoi SSR (60 p). Academy of Sciences of USSR.Google Scholar
  20. Edwin A.B. and Nyman D.J. 1968. Flow Pattern and Related Chemical Quality of Ground Water in the “500-foot” Sand in the Memphis Area, Tennessee. U.S. Geological Survey Water-Supply Paper 1853, 27 p.Google Scholar
  21. Eiswirth, M., Held, I. I., Wolf, L., & Hotzl, H. (2003). AISUWRS work package 1. Background study. University of Karlsruhe, Department of Applied Geology, Commissioned report 30.08.2003, 78 p.Google Scholar
  22. Eiswirth, M., & Hotzl, H. (1997). The impact of leaking sewers on urban ground water. In: J. Chilton et al. (Eds.), Ground water in the urban environment: Vol. 1. Problems, processes and management (pp. 399–404).Google Scholar
  23. Flohr, D. F., Garrett, J. W., Hamilton, J. T.,& Phillips, T. D. (2003). Water resources data Tennessee water year 2002. U.S. Geological Survey Water-Data Report TN-02-1, 442 p.Google Scholar
  24. Frolov, N. M. (1961). Groundwater of the pre-blak see Artesian Basin. Hydrogeological Lab. F.P. Savarenskii, V.37 (in Russian).Google Scholar
  25. Gaponov, E. A. (1928). List of Boreholes and Hydrogeological Map of the South-East Ukraine, Odessa (in Russian).Google Scholar
  26. Gonthier, G. J. (2002). Quality of shallow ground water in recently developed residential and commercial areas, Memphis Vicinity, Tennessee, 1997. U. S. Geological Survey Water-Resources Investigation Report 2002-4294, 105 p.Google Scholar
  27. Hardeman, W. D. (1966). Geological map of Tennessee (west sheet). Tennessee: Department of Conservation, Division of Geology.Google Scholar
  28. Hosman, R. L., Long, A. T., Lambert, T. W., Jeffery, H. G., & et al. (1968). Water resources of the Mississippi embayment; tertiary aquifers in the Mississippi embayment, with discussions of quality of the water. U.S. Geological Survey Professional Paper 448-D, 29 p.Google Scholar
  29. Hosman, R. L., (1996). Regional stratigraphy and subsurface geology of cenozoic deposits, Gulf Coastal Plain, South-Central United States. U. S. Geological Survey Professional Paper 1416-G, 35 p.Google Scholar
  30. Hutson, S. S., & Morris, A. J. (1992). Public Water-supply systems and water use in Tennessee, 1988.” U. S. Geological Survey Water-Resources Investigation Report 91-4195, 74 p.Google Scholar
  31. Kazmann, R. L. (1944). The water supply of the Memphis Area: A progress report. U.S. Geological Survey, 66 p.Google Scholar
  32. Kingsbury, J. A., & Parks, W. S. (1993). Hydrogeology of the principal aquifers and relation of faults to interaquifer leakage in the Memphis Area, Tennessee. U.S. Geological Survey Water-Resources Investigations Report 93-4075, 18 p.Google Scholar
  33. Kleiss, B. A., Coupe, R. H., Gonthier, G. J., & Justus, B. G. (2000). Water quality in the Mississippi embayment, Mississippi, Louisiana, Arkansas, Missouri, Tennessee, and Kentucky. U.S. Geological Survey Circular 1208, 35 p.Google Scholar
  34. Lange, O. C. (1915). About hydrogeological investigations of the territory of Basarabia. Agriculture of Bassarabia, No 9 (in Russian), 10 p.Google Scholar
  35. Larsen, D., Gentry, R. W., Ivey, S., Solomon, D. K., & Harris, J. (2002). Ground water leakage through a confining unit beneath a municipal well field, Memphis, Tennessee, USA. In H. D. Schulz & A. Hadeler (Eds.), Geochemical processes in soil and groundwater (pp. 51–64). Berlin: Wiley.Google Scholar
  36. Lickov, B. A., & Licistkii, V. I. (1936). Map of the hydrogeological regions in Ukraine (in Ukrainian).Google Scholar
  37. Macov, K. I. (1940). Groundwater of the Pre-Blak see depression. Gosgeolizdat (410 p) (in Russian).Google Scholar
  38. Malevanii, E. T. (1948). Essay of the history of the hydrogeologics investigations in Moldova and Izmail Region (15 p) (in Russian).Google Scholar
  39. McMaster, B. W., Parks, W. S., Scott, W. (1988). Concentrations of selected trace inorganic constituents and synthetic organic compounds in the water-table aquifers in the Memphis Area, Tennessee. U. S. Geological Survey Open-File Report 88-485, 23 p.Google Scholar
  40. Melian, R., Myrlean, N., Gurev, A., Moraru, C., & Radstake, F. (1999). Groundwater quality and rural drinking water supplies in the Republic of Moldova. Hydrogeology Journal, 7(3), 188–196.CrossRefGoogle Scholar
  41. Moore, G. K., & Brown, D. L. (1969). Stratigraphy of the fort pillow test well, Lauderdale County, Tennessee. Tennessee Division of Geology, Report of Investigation No 26. Boswell.Google Scholar
  42. Moraru, C. E. (1997). Helium geology of the Republic of Moldova. Intelectus, 1997, 18–25. (in Romanian).Google Scholar
  43. Moraru, C. E. (2002). Contribution to the study and practical use of ground water of Moldova. In: Studies and practical reports related to water resources management in a vulnerable environment conditions (pp. 32–40) (in Romanian).Google Scholar
  44. Moraru, C. E. (2009). Gidrogeohimia podzemnyh vod zony activnogo vodoobmena krainego Iugo-Zapada Vostocno—Evropeiskoi platformy (210 p). Chisinau: Elena V.I.Google Scholar
  45. Moraru, C. E., Bobrinsky, V. M., & Milcova, L. N. (1985). Investigation of the chemical composition of Moldova groundwater with paleohydrogeological, hydrodynamic and geochemical consideration. Report IGG, Chisinau, 460 p (in Russian).Google Scholar
  46. Moraru, C. E., Burdaev, V. P., & Negrutsa, P. N. (1990). Classification and evaluation of hydrogeochemical facies using the cluster analysis. Deposited with VINITI, 1990, No 6497-V90, Moscov, 15 p.Google Scholar
  47. Myrlean, N. F., Moraru, C. E. & Nastas, G. E. (1992). The ecological and geochemical atlas of the city of Chisinau (191 p). Chisinau: Stiinta (in Russian).Google Scholar
  48. Neely, B. L., Jr. (1984). Flood frequency and storm runoff of urban areas of Memphis and Shelby County, Tennessee. U.S. Geological Survey Water-Resources Investigations Report 844110.Google Scholar
  49. Nyman D.J. 1965. Predicted hydrologic effects of pumping from the Lichterman well field in the Memphis area, Tennessee.” U.S. Geological Survey Water-Supply Paper 1819-B, 26 p.Google Scholar
  50. Parks, W. S. (1973). Geological map of the southwest Memphis quadrangle Tennessee. U. S. Geological Survey Open-File Report, scale 1:24,000.Google Scholar
  51. Parks, W. S. (1990). Hydrogeology and preliminary assessment of the potential for contamination of the Memphis aquifer in the Memphis area, Tennessee. U.S. Geological Survey Water-Resources Investigation Report 90-4092, 39 p.Google Scholar
  52. Parks, W. S., Graham, D. D., Lowery, J. F. (1981). Chemical character of ground water in the shallow water-table aquifer at selected localities in the Memphis area, Tennessee. U. S. Geological Survey Open-File Report 81-223, 32 p.Google Scholar
  53. Petracov, E. V. (1972). Geochemistry of fluoride in the groundwater of Moldavian Artesian Basin.” Ph.D Dissertation. Leningrad State University, Russia, 280 p (in Russian).Google Scholar
  54. Polev, P. V. & Negadaev-Nikonov, K. N. (1965). Geology of the USSR (Vol. 45, 455 p), Moldavskai SSR. Nedra, Moscow. (in Russian).Google Scholar
  55. Robinson, J. L., Carmichael, J. K., Halford, K. J., & Ladd, D. E. (1997). Hydrogeologic framework and simulation of ground-water flow and travel time in the shallow aquifer system in the area of naval support activity Memphis, Millington, Tennessee. U.S. Geological Survey Water-Resources Investigation Report 97-4228, 56 p.Google Scholar
  56. Saraevskii, L. P. (1983). Groundwater resources of the territory between Rivers Prut and Nistru. Ph.D Dissertation, All Soviet Union Institute of Hydrogeology and Engineering Geology, 260 p (in Russian).Google Scholar
  57. Saucier, R. T. (1994). Geomorphology and quaternary geological history of the lower Mississippi valley (365 p). U.S. Army Corps of Engineering.Google Scholar
  58. Schneider, R. & Cushing, E. M. (1948). “Geology and Water Bearing Properties of the “1400-foot” Sand in the Memphis Area.” In: U.S. Geological Survey Circular 33, 3 p**.Google Scholar
  59. Sinthov, I. F. (1882). Geological investigations of Basarabia and same parts of Herson region: Materials for geology of Russia (Vol. 11, 12 p) (in Russian).Google Scholar
  60. Soil Survey, Shelby County. (1989). Tennessee, United States Department of Agriculture, Soil Conservation Service in Cooperation with Tennessee Agricultural Experimental Station, 53 p.Google Scholar
  61. Stasev, M. P. (1961). Regional estimation of the fresh groundwater resources of Moldova. AGeoM report, 150 p (in Russian).Google Scholar
  62. Strucov, G. (1852). Groundwater of Basarabia: Journal of the state estates, No 3 (in Russian).Google Scholar
  63. Tacis. (2000). Prut water management (1000 p). Report, Chisinau, IGS ASM.Google Scholar
  64. TDEC (Tennessee Department of Environment and Conservation Division of Water Supply). (2002). Ground Water 305B Water Quality Report, Nov., 35p.Google Scholar
  65. The Comprehensive Planning Section. (1981). Natural and Physical Characteristics of Memphis and Shelby County, Tennessee. The Shelby County Printing Department: 85 p.Google Scholar
  66. USGS (United States Geological Survey). (2003). http://waterdata.usgs.gov/tn/nwis/gwlevels.
  67. Van Arsdale, R. B., & Ten Brink, R. K. (2000). Late cretaceous and cenozoic geology of the New Madrid Seismic Zone. Bulletin of the Seismological Society of America, 90(2), 345–356.CrossRefGoogle Scholar
  68. Vzunzdaev, S. T. (1958). Hydrogeohemical zonation of artesian water of the pre-Dobruja depression and slope of the Russian platform. Report of the Academy of Sciences USSR, Vol. 114, No 4 (in Russian).Google Scholar
  69. Vzunzdaev, S. T. (1965). Hydrogeological investigations of the territory of Moldova. Report IGG, Chisinau, 160 p (in Russian).Google Scholar
  70. Waldron, B., Larsen, D., Hannigan R., & et al. (2011). Mississippi embayment regional ground water study. In: EPA 600/R-10/130 (192 p).Google Scholar
  71. Watzel, R., Ohnemus, J. (1997). Hydrogeologische Kartierung Karlsruhe – Speyer. Fortschreibung des Hydrogeologischen Baus im baden – wurttembergischen Teil. Gutachten des Geologischen Landesamtes Baden – Wurttemberg im Auftrag der Landesanstalt fur Umweltschutz Baden – Wurttemberg, AZ: 3531.01/96–4763.Google Scholar
  72. Wolf, L., Eiswirth, M., Hotzl, H. (2003). Assessing sewer—ground water interaction at the city scale based on individual sewer defects (Vol. 50, No. 1, pp. 423–426). RMZ—Materials and Geo-environment, Ljubljana.Google Scholar
  73. Wolf, L., Klinger, J., Hoetzl, H., & Mohrlok, U. (2007). Quantifying mass fluxes from urban drainage systems to the urban soil-aquifer system. Journal of Soils and Sediments, 7(2), 85–95.CrossRefGoogle Scholar
  74. Yearly trends: weather averages and extremes (Rastatt). (2014). http://www.myweather2.com/City-Town/Germany/Rastatt/climate-profile.aspx.
  75. Zelenin, I. V. (1974). Investigation of filtration parameters of aquifers and legitimacy forming the Moldova groundwater resource. Ph.D. Dissertation. Moscow State University, 300 p. (in Russian).Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratory of HydrogeologyInstitute of Geology and SeismologyChisinauMoldova
  2. 2.School for the EnvironmentUniversity of Massachusetts BostonBostonUSA

Personalised recommendations