Skip to main content

Basic Principles of Hydrogeology for Hydrogeochemical Vulnerability

  • Chapter
  • First Online:
Book cover Analysis of Hydrogeochemical Vulnerability

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

  • 548 Accesses

Abstract

Hydrogeochemical vulnerability is a part of groundwater vulnerability study. At present time, different meaning of pollutant, unsaturated zone, and aquifer is proposed in scientific literature. The analysis of these basic terms has been done. Contamination, pollution, and pollutants are differentiated. Unsaturated zone or vadose zone notion is analyzed related to the groundwater vulnerability. The modern meaning of an aquifer is described from the view of water quality protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alitovskii, M. E. (1962). Spravocnik gidrogeologa (p. 586). Moskva: Nedra.

    Google Scholar 

  • Appelo, C. A. J. & Postma, D. (1993). In A. A. Balkema (ed.) Geochemistry, ground water and pollution (p. 536). Rotterdam.

    Google Scholar 

  • Aquachem V. 4.0. (2003). User’s Manual. Lukas Calmbach and Waterloo Hydrogeologic, Inc, p. 276.

    Google Scholar 

  • Berkovwitz, B., Dror, I., Yaron, B. (2008). Contaminant geochemistry, interaction and transport in the subsurface environment (p. 412). New York: Springer.

    Google Scholar 

  • Committee on Techniques for assessing ground water vulnerability (USA). (1993). Ground water vulnerability assessment: contamination potential under conditions of uncertainty (p. 204). Washington: National Academic Press.

    Google Scholar 

  • COST action 620: Vulnerability and risk mapping for the protection of the carbonate (karst) aquifer. Final report, 2003. (edited by Francois Zwahlen), European Commission, Directorate—General for Research: 297p.

    Google Scholar 

  • Driver, J. I. (1988). The geochemistry of natural water (p. 436). Upper Saddle River: Prentice Hall Inc.

    Google Scholar 

  • Faure, G. (1998). Principles and applications of geochemistry (p. 600). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Fetter, C. W. (2001). Applied hydrogeology (4th edn., p. 598). Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Freeze, R. A., Cherry, J. A. (1979). Groundwater (p. 604). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Goldberg, V. M., & Gazda, S. (1984). Gidrogeologicheskie osnovy okhrany podzemnykh vod ot zagryazneniya [Hydrogeological principles of groundwater protection against pollution] (p. 238). Moscow: Nedra.

    Google Scholar 

  • Goldberg, V. M. (1987). Vzaimosveazi zagreaznenia podzemnyh vod i prirodnoi sredy (p. 248). Moscow: Gidrometeoizdat.

    Google Scholar 

  • Gurdak, J. J. (2008). Ground-water vulnerability: Nonpoint-source contamination, climate variability, and the High Plains aquifer (p. 223). Saarbrucken, Germany: VDM Verlag Publishing, ISBN: 978-3-639-09427-5.

    Google Scholar 

  • Heath, R. C. (1987). Basic ground-water hydrology (p. 84). USGS: US Government printing office.

    Google Scholar 

  • Hudak, P. F. (2000). Principles of hydrogeology (p. 204). USA: Lewis Publishers.

    Google Scholar 

  • Langmir, D. (1997). Aqueous environmental geochemistry (p. 601). Upper Saddle River: Prentice Hall Inc.

    Google Scholar 

  • Merkel B. I., Planer–Friedrich B. (2008). Groundwater geochemistry: A practical guide to modeling of natural and contaminated aquatic systems, 2nd ed. (p. 230). Springer.

    Google Scholar 

  • Moraru, C. E. (2009). Gidrogeohimia podzemnyh vod zony activnogo vodoobmena krainego Iugo-Zapada Vostocno – Evropeiskoi platformy (Vol. 1, p. 210). Chisinau: Elena.

    Google Scholar 

  • Moraru, C. E. & Anderson, J. A. (2005). A Comparative Assessment of the Ground Water Quality of the Republic of Moldova and the Memphis, TN Area of the United States of America (p. 188). Ground Water Institute, Memphis, TN.

    Google Scholar 

  • Moraru, C., & Zincenco, O. (2005). Podzemnye vody g. Kishinev (Vol. 1, p. 111). Chisinau: Elena.

    Google Scholar 

  • Myrlean, N. F., Moraru, C. E. & Nastas, G. E. (1992). The Ecological and Geochemical Atlas of the City of Chisinau (p. 191). Chisinau: Stiinta (in Russian).

    Google Scholar 

  • Perelman, A. I. (1982). Geohimia prirodnyh vod (p. 152). Moscow: Nauka.

    Google Scholar 

  • Perelman, A. I. (1989). Geohimia (p. 528). Moscow: Vyshaia skola.

    Google Scholar 

  • Polubarinova-Kocina, P. Ya. (1952). The theory of ground water movement (p. 380). Moscow: Nauka.

    Google Scholar 

  • Samarina, V. S. (1977). Gidrogeohimia (p. 280). Leningrad: LGU.

    Google Scholar 

  • Soliman, M. M., et al. (1997). Environmental hydrogeology (p. 386). Boca Raton: Lewis publishers.

    Google Scholar 

  • Sources of pollution. (2014). http://www.euwfd.com/html/source_of_pollution_-_overview.html.

  • Shestakov, V. M., & Pozdneakov, S. P. (2003). Geogidrologia. Akademkniga, p. 176.

    Google Scholar 

  • Tindal, J. A., Kunkel, J. R., & Anderson, D. E. (1999). Unsaturated zone hydrology for scientists and engineers (p. 624). United Saddle River: Prentice-Hall Inc.

    Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology (p. 535). USA: Willey.

    Google Scholar 

  • Wellings, S. R., & Bell, J. P. (1980). Movement of water and nitartes in the unsaturated zone of upper chalk near Winchester, Hants, England. Journal of Hydrology, 48, 119–136.

    Article  Google Scholar 

  • Wellings, S. R., & Bell, J. P. (1982). Pysical control of water movement in the unsaturated zone. The Quaternaly Journal of engineering geology, 15, 235–241.

    Article  Google Scholar 

  • Wight, W. D., & Sondereger, J. L. (2001). Manual of applied field hydrogeology (p. 608). New York: McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Moraru .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moraru, C., Hannigan, R. (2018). Basic Principles of Hydrogeology for Hydrogeochemical Vulnerability. In: Analysis of Hydrogeochemical Vulnerability. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-319-70960-4_3

Download citation

Publish with us

Policies and ethics