Basic Principles of Hydrogeology for Hydrogeochemical Vulnerability

  • Constantin MoraruEmail author
  • Robyn Hannigan
Part of the Springer Hydrogeology book series (SPRINGERHYDRO)


Hydrogeochemical vulnerability is a part of groundwater vulnerability study. At present time, different meaning of pollutant, unsaturated zone, and aquifer is proposed in scientific literature. The analysis of these basic terms has been done. Contamination, pollution, and pollutants are differentiated. Unsaturated zone or vadose zone notion is analyzed related to the groundwater vulnerability. The modern meaning of an aquifer is described from the view of water quality protection.


Water contamination and pollution Unsaturated or vadose zone Aquifer 


  1. Alitovskii, M. E. (1962). Spravocnik gidrogeologa (p. 586). Moskva: Nedra.Google Scholar
  2. Appelo, C. A. J. & Postma, D. (1993). In A. A. Balkema (ed.) Geochemistry, ground water and pollution (p. 536). Rotterdam.Google Scholar
  3. Aquachem V. 4.0. (2003). User’s Manual. Lukas Calmbach and Waterloo Hydrogeologic, Inc, p. 276.Google Scholar
  4. Berkovwitz, B., Dror, I., Yaron, B. (2008). Contaminant geochemistry, interaction and transport in the subsurface environment (p. 412). New York: Springer.Google Scholar
  5. Committee on Techniques for assessing ground water vulnerability (USA). (1993). Ground water vulnerability assessment: contamination potential under conditions of uncertainty (p. 204). Washington: National Academic Press.Google Scholar
  6. COST action 620: Vulnerability and risk mapping for the protection of the carbonate (karst) aquifer. Final report, 2003. (edited by Francois Zwahlen), European Commission, Directorate—General for Research: 297p.Google Scholar
  7. Driver, J. I. (1988). The geochemistry of natural water (p. 436). Upper Saddle River: Prentice Hall Inc.Google Scholar
  8. Faure, G. (1998). Principles and applications of geochemistry (p. 600). Upper Saddle River: Prentice Hall.Google Scholar
  9. Fetter, C. W. (2001). Applied hydrogeology (4th edn., p. 598). Upper Saddle River: Prentice-Hall.Google Scholar
  10. Freeze, R. A., Cherry, J. A. (1979). Groundwater (p. 604). Upper Saddle River: Prentice Hall.Google Scholar
  11. Goldberg, V. M., & Gazda, S. (1984). Gidrogeologicheskie osnovy okhrany podzemnykh vod ot zagryazneniya [Hydrogeological principles of groundwater protection against pollution] (p. 238). Moscow: Nedra.Google Scholar
  12. Goldberg, V. M. (1987). Vzaimosveazi zagreaznenia podzemnyh vod i prirodnoi sredy (p. 248). Moscow: Gidrometeoizdat.Google Scholar
  13. Gurdak, J. J. (2008). Ground-water vulnerability: Nonpoint-source contamination, climate variability, and the High Plains aquifer (p. 223). Saarbrucken, Germany: VDM Verlag Publishing, ISBN: 978-3-639-09427-5.Google Scholar
  14. Heath, R. C. (1987). Basic ground-water hydrology (p. 84). USGS: US Government printing office.Google Scholar
  15. Hudak, P. F. (2000). Principles of hydrogeology (p. 204). USA: Lewis Publishers.Google Scholar
  16. Langmir, D. (1997). Aqueous environmental geochemistry (p. 601). Upper Saddle River: Prentice Hall Inc.Google Scholar
  17. Merkel B. I., Planer–Friedrich B. (2008). Groundwater geochemistry: A practical guide to modeling of natural and contaminated aquatic systems, 2nd ed. (p. 230). Springer.Google Scholar
  18. Moraru, C. E. (2009). Gidrogeohimia podzemnyh vod zony activnogo vodoobmena krainego Iugo-Zapada Vostocno – Evropeiskoi platformy (Vol. 1, p. 210). Chisinau: Elena.Google Scholar
  19. Moraru, C. E. & Anderson, J. A. (2005). A Comparative Assessment of the Ground Water Quality of the Republic of Moldova and the Memphis, TN Area of the United States of America (p. 188). Ground Water Institute, Memphis, TN.Google Scholar
  20. Moraru, C., & Zincenco, O. (2005). Podzemnye vody g. Kishinev (Vol. 1, p. 111). Chisinau: Elena.Google Scholar
  21. Myrlean, N. F., Moraru, C. E. & Nastas, G. E. (1992). The Ecological and Geochemical Atlas of the City of Chisinau (p. 191). Chisinau: Stiinta (in Russian).Google Scholar
  22. Perelman, A. I. (1982). Geohimia prirodnyh vod (p. 152). Moscow: Nauka.Google Scholar
  23. Perelman, A. I. (1989). Geohimia (p. 528). Moscow: Vyshaia skola.Google Scholar
  24. Polubarinova-Kocina, P. Ya. (1952). The theory of ground water movement (p. 380). Moscow: Nauka.Google Scholar
  25. Samarina, V. S. (1977). Gidrogeohimia (p. 280). Leningrad: LGU.Google Scholar
  26. Soliman, M. M., et al. (1997). Environmental hydrogeology (p. 386). Boca Raton: Lewis publishers.Google Scholar
  27. Shestakov, V. M., & Pozdneakov, S. P. (2003). Geogidrologia. Akademkniga, p. 176.Google Scholar
  28. Tindal, J. A., Kunkel, J. R., & Anderson, D. E. (1999). Unsaturated zone hydrology for scientists and engineers (p. 624). United Saddle River: Prentice-Hall Inc.Google Scholar
  29. Todd, D. K. (1980). Groundwater hydrology (p. 535). USA: Willey.Google Scholar
  30. Wellings, S. R., & Bell, J. P. (1980). Movement of water and nitartes in the unsaturated zone of upper chalk near Winchester, Hants, England. Journal of Hydrology, 48, 119–136.CrossRefGoogle Scholar
  31. Wellings, S. R., & Bell, J. P. (1982). Pysical control of water movement in the unsaturated zone. The Quaternaly Journal of engineering geology, 15, 235–241.CrossRefGoogle Scholar
  32. Wight, W. D., & Sondereger, J. L. (2001). Manual of applied field hydrogeology (p. 608). New York: McGraw-Hill.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratory of HydrogeologyInstitute of Geology and SeismologyChisinauMoldova
  2. 2.School for the EnvironmentUniversity of Massachusetts BostonBostonUSA

Personalised recommendations