Advertisement

Geochemical Method of the Groundwater Vulnerability Assessment

  • Constantin MoraruEmail author
  • Robyn Hannigan
Chapter
  • 356 Downloads
Part of the Springer Hydrogeology book series (SPRINGERHYDRO)

Abstract

The new geochemical method of groundwater vulnerability assessment is proposed. In order to background this method, longitudinal geochemical profile is referred as geochemical signals and theoretical background of pollutant migration in unsaturated zone is analyzed. Final point of geochemical migration in the unsaturated zone has been argued. Three independent methods of the final point of migration are discussed, and namely laboratory, statistical, and experimental. On the basis of this, geochemical aquifer vulnerability estimation leakage potential methodology (GAVEL) is justified.

Keywords

Geochemical signals Pollutant migration Point of migration Unsaturated zone 

References

  1. Avereanov, S. F. (1965). Some question related to salinisation prognosis of the irrigated land and methods of contestation in the European part of USSR. In Irrigated lands in the European parts of USSR (174p), Moscow, Kolos.Google Scholar
  2. Bhadoria V. 2013. Introduction to some simple signal. http://www.scribd.com/doc/163208161/Introduction-to-Some-Simple-Signal.
  3. Carlslaw, H. S., & Jaegar, J. C. (1959). Conduction of heat in solids (510p). Oxford: Oxford University Press.Google Scholar
  4. Cook, P. G., Edmunts, W. M., & Gaye, C. B. (1992). Estimating paleorecharge and paleoclimate from unsaturated zone profiles. Water Resource Research, 10, 2721–2731.CrossRefGoogle Scholar
  5. Dagan, G. (1987). Theory of solute transport by groundwater. Annual Review of Fluid Mechanics, 19, 183–215.CrossRefGoogle Scholar
  6. Edmunts, W. M., & Tyler, S. W. (2002). Unsaturated zones as archive of past climates: Towards a new proxy for continental regions. Hydrogeology Journal, 10, 216–228.CrossRefGoogle Scholar
  7. Ellsworth, T. R., Jury, W. A., Ernst, F. F., & Shouse, P. J. (1991). A three-dimensional field study of solute transport through unsaturated, layered, porous media 1. Methodology, mass recovery, and mean transport (p. 497). Publications from USDA–ARS/UNL Faculty. http://digitalcommons.unl.edu/usdaarsfacpub/497.
  8. Faure, G. (1998). Principles and applications of geochemistry (600p). Englewood Cliffs NJ: Prentice Hall.Google Scholar
  9. Geohimiceskie metody poiskov rundyh mestorojdenii. (1982). Sibirskoe otdelenie, Nedra (167p). (in Russian).Google Scholar
  10. Gurdak, J. J. (2008). Ground-water vulnerability: Nonpoint-source contamination, climate variability, and the high plains aquifer (223p). Saarbrucken, Germany: VDM Verlag Publishing. ISBN: 978-3-639-09427-5.Google Scholar
  11. Holtschlag, D. J., & Luukkonen, C. L. (1997). Vulnerability of ground water to atrazine leaching in Kent County, Michigan (49p). U.S. Geological Water—resources investigations report 96-4198.Google Scholar
  12. Kay, M. S. (1993). Fundamentals of statistical signals processing estimation theory (589p). Englewood Cliffs NJ: Prentice Hall Inc.Google Scholar
  13. Krainov, S. R. (1973). Geohimia redkih elementov v podzemnyh vodah. Moscow, Nedra (270p).Google Scholar
  14. Moraru, C. E. (2009). Gidrogeohimia podzemnyh vod zony activnogo vodoobmena krainego Iugo-Zapada Vostocno - Evropeiskoi platformy (210p). Chisinau: Elena V.I.Google Scholar
  15. Ogata, A., & Banks, R. B. (1961). A solution of the differential equation of longitudinal dispersion in porous media. Geological survey professional paper (441-A, pp. 1–7).Google Scholar
  16. Pashkovskii, I. S. (1973). Metody opredelenia infilitrationnogo pitania po rascetam vlagoperenosa v zone aeratii. Moskva (219p).Google Scholar
  17. Perelman, A. I. (1982). Geohimia prirodnyh vod, Moscow, Nauka (152p).Google Scholar
  18. Perelman, A. I. (1989). Geohimia. Moscow, Vyshaia skola (528p).Google Scholar
  19. Priemer, R. (1991). Introductory signal processing. In Advance series in electrical and computer engineering (vol. 6, 730p). Singapore: World Scientific Publishing Co. Pte.Google Scholar
  20. Polubarinova-Kocina, P. Ya. (1952). The theory of ground water movement. Moscow, Nauka (380p).Google Scholar
  21. Radushkevich, L. B. (1960). Kurs staticheskoi fiziki. Moscow: Uchpedgiz. (in Russian).Google Scholar
  22. Rosali, A. A. (1980). Metody opredelenia migrationnyh parametrov. Obzor VNII ekonomike minera’nogo syrya i geologo-razvedocnyh rabot (62p). Moscow: VIEMS.Google Scholar
  23. Shestakov, V. M. (1973). Dinamika podzemnyh vod. MGU (210p).Google Scholar
  24. Taylor, J. (1954). The dispersion of mater in turbulent flow through a pipe. Proceedings of the Royal Society, Series A, Mathematical and Physical Sciences, 223(1155), 446–468.Google Scholar
  25. U.S. EPA. (1993). A review of methods for assessing aquifer sensitivity and ground water vulnerability to pesticide contamination. EPA# 813R93002.Google Scholar
  26. U.S. EPA. (1984). Characterization of soil disposal system leachates. EPA# 600284101.Google Scholar
  27. U.S. EPA. (1988). Factors affecting trace metal mobility in subsurface soils. EPA# 600288036.Google Scholar
  28. U.S. EPA. (1994). Lead leaching from submersible well pumps [environmental fact sheet. EPA# 747F94001.Google Scholar
  29. U.S. EPA. (1973). Polluted groundwater: Some causes, effects, controls, and monitoring. EPA# 600473001b.Google Scholar
  30. Voss, F. D. (2003). Development and testing of methods for assessing and mapping agricultural areas susceptible to atrazine leaching in the State of Washington (13p). U.S. geological survey water—Resources investigation report 03-4173.Google Scholar
  31. Wellings, S. R., & Bell, J. P. (1980). Movement of water and nitrates in the unsaturated zone of upper chalk near Winchester, Hants, England. Journal of Hydrology, 48, 119–136.CrossRefGoogle Scholar
  32. Wellings, S. R., & Bell, J. P. (1982). Physical control of water movement in the unsaturated zone. The Quarterly Journal of Engineering Geology, 15, 235–241.CrossRefGoogle Scholar
  33. Zelenin, I. V., et al. (1984). Interrelation of ground and surface water of Moldova. Chisinau, Stiinta (150p).Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratory of HydrogeologyInstitute of Geology and SeismologyChisinauMoldova
  2. 2.School for the EnvironmentUniversity of Massachusetts BostonBostonUSA

Personalised recommendations