Skip to main content

Overview of Groundwater Vulnerability Assessment Methods

  • Chapter
  • First Online:
Analysis of Hydrogeochemical Vulnerability

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

Abstract

Contemporary ideas about groundwater vulnerability were discussed. History of the question and the concept of vulnerability are examined. Modern approaches to groundwater vulnerability include usage of overlay, index, statistical, and process-based simulation methods. Each of these methods has been considered in details. The importance and accuracy of the methods are shown in the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albinet, M., & Margat, J. (1971). Cartographie de la vulnerabilite a ala pollution des nappes d’eau souterraine. Ground water pollution symposium. In: Proceedings of the Moscow Symposium, August 1971. Actes du collogue du Moscow. Aout 1971): IASH – AISH Publ. No.103.

    Google Scholar 

  • Aller, L., Bennett, T., Lehr, J. H., & Petty, R. J. (1987). DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeological settings. Environmental Protection Agency, Oklahoma: U.S.

    Google Scholar 

  • Bardossy, G., & Fodor, J. (2001). Traditional and new ways to handle uncertainty in geology. Natural Resources Research, 10(3), 179–187.

    Article  Google Scholar 

  • Chun, Y., & Griffith, D. A. (2013). Spatial statistics and geostatistics: theory and applications for geographic information science and technology (SAGE advances in geographic information science and technology series) (200p). California: SAGE Publications Ltd.

    Google Scholar 

  • Civita, M. (1990). La valutazione della vulnerabilita degli acquiferi all’inquinamento. Proc. 1st Conv. Naz. “Protezione e Gestione delle Acque Sotterranee: Metodologie, Technologie e Obiettivi”. Marano sul Panaro, 3, 39–86.

    Google Scholar 

  • Civita, M. (1993). Ground water vulnerability maps: a review. In Proceedings IX Symposium on Pecticide Chemistry, Degradation and Mobility of Xenobiotics, Piacenza, Italy, Lucca (Biagini)1993 (pp. 587–631).

    Google Scholar 

  • Civita, M. (2010). The combined approach when assessing and mapping groundwater vulnerability to contamination. Journal Water Resources and Proyection, 2010(2), 14–28.

    Article  Google Scholar 

  • Clark, I., & Harper, W. V. (2000). Practical geostatistics (442p). Ecosse North Amer Llc.

    Google Scholar 

  • Committee on Techniques for assessing ground water vulnerability (USA). (1993). Ground water vulnerability assessment: contamination potential under conditions of uncertainty (204p). Washington: National Academic Press.

    Google Scholar 

  • Connel, L. D., & van den Daele, G. (2003). A quantitative approach to aquifer vulnerability mapping. J. of Hydrology, 276, 71–78.

    Article  Google Scholar 

  • COST action 620. (2003). In F. Zwahlen (Ed.) Vulnerability and risk mapping for the protection of the carbonate (karst) aquifer (297p). Final report. European Commission, Directorate—General for Research.

    Google Scholar 

  • Focazio, Michel, L., Reilly, T. E., Rupper, M. G., & Helsel, D. R. (2002). Assessing ground water vulnerability to contamination: Providing scientifically defensible information for decision makers. U.S. Geological Circular 1224, 33 p.

    Google Scholar 

  • Glossary. (2004). http://webword.unesco.org/water/ihp/db/glossary/ http://webworld.unesco.org/water/ihp/db/glossary/glu/aglu.htm.

  • Goldscheider, N. (2002). Hydrogeology and vulnerability of karst systems—examples from the Northen Alps and Swabian Alb. Ph.D. thesis, Institute of applied geology, University of Karlsruhe, Germany. 236 p.

    Google Scholar 

  • Goldscheider, N., Klute, M., Sturm, S., & Hotzl, H. (2000). The PI method—a GIS-based approach to mapping ground water vulnerability with special consideration of karst aquifer. Zeitschnft Angewandte Geologie, 46(3), 153–166.

    Google Scholar 

  • Goldberg, V. M. (1993). Natural protection of groundwater against contamination. In Y. Eckstein & A. Zaporozec (Eds.) Proceedings, Second USA/Cis Joint Conference on Environmental Hydrology and Hydrogeology, Washington, DC. Water management and protection (pp. 141–145). Alexandria, Virginia: American Institute of Hydrology.

    Google Scholar 

  • Goldberg, V. M., & Gazda, S. (1984). Gidrogeologicheskie osnovy okhrany podzemnykh vod ot zagryazneniya (Hydrogeological principles of groundwater protection against pollution) (239p). Moscow: Nedra.

    Google Scholar 

  • Goldberg, V. M. (1987). Vzaimosveazi zagreaznenia podzemnyh vod i prirodnoi sredy (248p). Moscow: Gidrometeoizdat.

    Google Scholar 

  • Gurdak, J. J. (2008). Ground-water vulnerability: Nonpoint-source contamination, climate variability, and the High Plains aquifer (223p). Saarbrucken, Germany: VDM Verlag Publishing. ISBN: 978-3-639-09427-5.

    Google Scholar 

  • Hancen, D. T. (2014). http://proceedings.esri.com/library/userconf/proc98/proceed/to200/pap183/p183.htm.

  • Holtschlag, D. J., & Luukkonen C. L. (1997). Vulnerability of ground water to atrazine leaching in Kent County, Michigan. U.S. Geological Water—Resources Investigations Report 96-4198: 49 p.

    Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics (561p). Oxford: Oxford University Press.

    Google Scholar 

  • Johnston, R. H. (1988). Factor affecting ground water quality. National water summary 1986: Hydrologic events and ground water quality. Water-Supply paper. Reston, Virginia. U.S. Geological Survey 2325: 32 p.

    Google Scholar 

  • Jousma, G., Kloosterman, F., Moraru, C., et al. (2000). Groundwater and land use. Report of the TACIS Prut water management project: 180 p.

    Google Scholar 

  • Kundzewicz, Z. W. (1995). Hydrological uncertainty in perspective. In Z. W. Kundzewicz (Ed.), New uncertainty concepts in hydrology and water resources (pp. 3–10). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Levy, J. l., et al. (1998). Assessing aquifer susceptibility to and severity of atrazine contamination at field site in south-central Wisconsin, USA. Hydrogeology Journal, 6, 483–499.

    Article  Google Scholar 

  • Margat, J. (1968). Vulnerabilite des nappes d’eau souterraines a la pollution. Bases de la cartographie. BRGM# 68. SLG 198 HYD. Orleans.

    Google Scholar 

  • Matheron, G. (1971). The theory of regionalized variables and its applications (211p). Ecole nationale supe rieuredes mines, Paris.

    Google Scholar 

  • Moraru, C. E. (2009). Gidrogeohimia podzemnyh vod zony activnogo vodoobmena krainego Iugo-Zapada Vostocno—Evropeiskoi platformy. Chisinau: Elena V.I.: 210p.

    Google Scholar 

  • Moraru, C., Budesteanu, S., & Jousma, G. (2005). Typical shallow groundwater geochemistry in the Republic of Moldova (pilot study). Buletinul Institutului de Geofizica si Geologie al Academiei de Stiinte a Moldovei, nr., 1, 36–48.

    Google Scholar 

  • Moraru, C. E., Burdaev, V. P., & Negrutsa, P. N. (1990). Classification and evaluation of hydrogeochemical facies using the cluster analysis. In Deposited with VINITI, 1990, No 6497-V90, Moscov: 15p.

    Google Scholar 

  • Moraru, C. E., & Timoshencova, A. N. (2013). Evaluation of spatial interpolation methods for groundwater (case study, the Republic of Moldova). Buletinul Institutului de Geofizica si Geologie al Academiei de Stiinte a Moldovei, nr., 1, 24–42.

    Google Scholar 

  • Nolan, B. T. (2001). Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground water of the United States. Ground Water, 39(2), 290–299.

    Article  Google Scholar 

  • Practical guide. Ground water vulnerability mapping in karstic regions (EPIK). (1998). Swiss Agency for the Environment, Forests and Landscape (SAEFL): 56p.

    Google Scholar 

  • Rock, N. M. S. (1988). Lecture Notes in Earth Sciences. In S. Bhattacharji, G. M. Friedman, H. J Neugebauer, & A. Scielacher (Eds.) Numerical geology (427p). Berlin: Springer.

    Google Scholar 

  • Teso, R. R., et al. (1996). Use of logistics regressions and GIS modelling to predict groundwater vulnerability to pesticides. Journal of Environmental Quality, 25, 425–432.

    Article  Google Scholar 

  • Vias, J. M., et al. (2002). Preliminary proposal of a method for vulnerability mapping in carbonate aquifers. In F. Caraso, J. J. Duran, & B. Andreo (Eds.) Carst and environment (pp. 75–83).

    Google Scholar 

  • Voss, F. D. (2003). Development and testing of methods for assessing and mapping agricultural areas susceptible to atrazine leaching in the State of Washington. U.S. Geological Survey Water—Resources Investigation Report 03-4173: 13 p.

    Google Scholar 

  • Vrba, V., & Zaporozec, A. (1994). Guidebook on mapping ground water vulnerability. International association of hydrogeologists (vol. 16, 90 p).

    Google Scholar 

  • Witkowski, A. J., Kowalczyk, A., & Vrba, J. (2007). Groundwater vulnerability assessment and mapping. In: selected papers from the groundwater vulnerability assessment and mapping conference, Ustron, Poland, 2004 (263p). London, UK: Taylor and Francis group.

    Google Scholar 

  • Zekter, I. S., Belousova, A. P., & Yu, Dudov V. (1995). Regional assessment and mapping of groundwater vulnerability to contamination. Environmental Geology, 25, 225–231.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Moraru .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moraru, C., Hannigan, R. (2018). Overview of Groundwater Vulnerability Assessment Methods. In: Analysis of Hydrogeochemical Vulnerability. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-319-70960-4_1

Download citation

Publish with us

Policies and ethics