Advertisement

Overview of Groundwater Vulnerability Assessment Methods

  • Constantin MoraruEmail author
  • Robyn Hannigan
Chapter
  • 423 Downloads
Part of the Springer Hydrogeology book series (SPRINGERHYDRO)

Abstract

Contemporary ideas about groundwater vulnerability were discussed. History of the question and the concept of vulnerability are examined. Modern approaches to groundwater vulnerability include usage of overlay, index, statistical, and process-based simulation methods. Each of these methods has been considered in details. The importance and accuracy of the methods are shown in the discussion.

Keywords

Groundwater Groundwater vulnerability Methods of groundwater vulnerability assessment 

References

  1. Albinet, M., & Margat, J. (1971). Cartographie de la vulnerabilite a ala pollution des nappes d’eau souterraine. Ground water pollution symposium. In: Proceedings of the Moscow Symposium, August 1971. Actes du collogue du Moscow. Aout 1971): IASH – AISH Publ. No.103.Google Scholar
  2. Aller, L., Bennett, T., Lehr, J. H., & Petty, R. J. (1987). DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeological settings. Environmental Protection Agency, Oklahoma: U.S.Google Scholar
  3. Bardossy, G., & Fodor, J. (2001). Traditional and new ways to handle uncertainty in geology. Natural Resources Research, 10(3), 179–187.CrossRefGoogle Scholar
  4. Chun, Y., & Griffith, D. A. (2013). Spatial statistics and geostatistics: theory and applications for geographic information science and technology (SAGE advances in geographic information science and technology series) (200p). California: SAGE Publications Ltd.Google Scholar
  5. Civita, M. (1990). La valutazione della vulnerabilita degli acquiferi all’inquinamento. Proc. 1st Conv. Naz. “Protezione e Gestione delle Acque Sotterranee: Metodologie, Technologie e Obiettivi”. Marano sul Panaro, 3, 39–86.Google Scholar
  6. Civita, M. (1993). Ground water vulnerability maps: a review. In Proceedings IX Symposium on Pecticide Chemistry, Degradation and Mobility of Xenobiotics, Piacenza, Italy, Lucca (Biagini)1993 (pp. 587–631).Google Scholar
  7. Civita, M. (2010). The combined approach when assessing and mapping groundwater vulnerability to contamination. Journal Water Resources and Proyection, 2010(2), 14–28.CrossRefGoogle Scholar
  8. Clark, I., & Harper, W. V. (2000). Practical geostatistics (442p). Ecosse North Amer Llc.Google Scholar
  9. Committee on Techniques for assessing ground water vulnerability (USA). (1993). Ground water vulnerability assessment: contamination potential under conditions of uncertainty (204p). Washington: National Academic Press.Google Scholar
  10. Connel, L. D., & van den Daele, G. (2003). A quantitative approach to aquifer vulnerability mapping. J. of Hydrology, 276, 71–78.CrossRefGoogle Scholar
  11. COST action 620. (2003). In F. Zwahlen (Ed.) Vulnerability and risk mapping for the protection of the carbonate (karst) aquifer (297p). Final report. European Commission, Directorate—General for Research.Google Scholar
  12. Focazio, Michel, L., Reilly, T. E., Rupper, M. G., & Helsel, D. R. (2002). Assessing ground water vulnerability to contamination: Providing scientifically defensible information for decision makers. U.S. Geological Circular 1224, 33 p.Google Scholar
  13. Goldscheider, N. (2002). Hydrogeology and vulnerability of karst systems—examples from the Northen Alps and Swabian Alb. Ph.D. thesis, Institute of applied geology, University of Karlsruhe, Germany. 236 p.Google Scholar
  14. Goldscheider, N., Klute, M., Sturm, S., & Hotzl, H. (2000). The PI method—a GIS-based approach to mapping ground water vulnerability with special consideration of karst aquifer. Zeitschnft Angewandte Geologie, 46(3), 153–166.Google Scholar
  15. Goldberg, V. M. (1993). Natural protection of groundwater against contamination. In Y. Eckstein & A. Zaporozec (Eds.) Proceedings, Second USA/Cis Joint Conference on Environmental Hydrology and Hydrogeology, Washington, DC. Water management and protection (pp. 141–145). Alexandria, Virginia: American Institute of Hydrology.Google Scholar
  16. Goldberg, V. M., & Gazda, S. (1984). Gidrogeologicheskie osnovy okhrany podzemnykh vod ot zagryazneniya (Hydrogeological principles of groundwater protection against pollution) (239p). Moscow: Nedra.Google Scholar
  17. Goldberg, V. M. (1987). Vzaimosveazi zagreaznenia podzemnyh vod i prirodnoi sredy (248p). Moscow: Gidrometeoizdat.Google Scholar
  18. Gurdak, J. J. (2008). Ground-water vulnerability: Nonpoint-source contamination, climate variability, and the High Plains aquifer (223p). Saarbrucken, Germany: VDM Verlag Publishing. ISBN: 978-3-639-09427-5.Google Scholar
  19. Holtschlag, D. J., & Luukkonen C. L. (1997). Vulnerability of ground water to atrazine leaching in Kent County, Michigan. U.S. Geological Water—Resources Investigations Report 96-4198: 49 p.Google Scholar
  20. Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics (561p). Oxford: Oxford University Press.Google Scholar
  21. Johnston, R. H. (1988). Factor affecting ground water quality. National water summary 1986: Hydrologic events and ground water quality. Water-Supply paper. Reston, Virginia. U.S. Geological Survey 2325: 32 p.Google Scholar
  22. Jousma, G., Kloosterman, F., Moraru, C., et al. (2000). Groundwater and land use. Report of the TACIS Prut water management project: 180 p.Google Scholar
  23. Kundzewicz, Z. W. (1995). Hydrological uncertainty in perspective. In Z. W. Kundzewicz (Ed.), New uncertainty concepts in hydrology and water resources (pp. 3–10). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Levy, J. l., et al. (1998). Assessing aquifer susceptibility to and severity of atrazine contamination at field site in south-central Wisconsin, USA. Hydrogeology Journal, 6, 483–499.CrossRefGoogle Scholar
  25. Margat, J. (1968). Vulnerabilite des nappes d’eau souterraines a la pollution. Bases de la cartographie. BRGM# 68. SLG 198 HYD. Orleans.Google Scholar
  26. Matheron, G. (1971). The theory of regionalized variables and its applications (211p). Ecole nationale supe rieuredes mines, Paris.Google Scholar
  27. Moraru, C. E. (2009). Gidrogeohimia podzemnyh vod zony activnogo vodoobmena krainego Iugo-Zapada Vostocno—Evropeiskoi platformy. Chisinau: Elena V.I.: 210p.Google Scholar
  28. Moraru, C., Budesteanu, S., & Jousma, G. (2005). Typical shallow groundwater geochemistry in the Republic of Moldova (pilot study). Buletinul Institutului de Geofizica si Geologie al Academiei de Stiinte a Moldovei, nr., 1, 36–48.Google Scholar
  29. Moraru, C. E., Burdaev, V. P., & Negrutsa, P. N. (1990). Classification and evaluation of hydrogeochemical facies using the cluster analysis. In Deposited with VINITI, 1990, No 6497-V90, Moscov: 15p.Google Scholar
  30. Moraru, C. E., & Timoshencova, A. N. (2013). Evaluation of spatial interpolation methods for groundwater (case study, the Republic of Moldova). Buletinul Institutului de Geofizica si Geologie al Academiei de Stiinte a Moldovei, nr., 1, 24–42.Google Scholar
  31. Nolan, B. T. (2001). Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground water of the United States. Ground Water, 39(2), 290–299.CrossRefGoogle Scholar
  32. Practical guide. Ground water vulnerability mapping in karstic regions (EPIK). (1998). Swiss Agency for the Environment, Forests and Landscape (SAEFL): 56p.Google Scholar
  33. Rock, N. M. S. (1988). Lecture Notes in Earth Sciences. In S. Bhattacharji, G. M. Friedman, H. J Neugebauer, & A. Scielacher (Eds.) Numerical geology (427p). Berlin: Springer.Google Scholar
  34. Teso, R. R., et al. (1996). Use of logistics regressions and GIS modelling to predict groundwater vulnerability to pesticides. Journal of Environmental Quality, 25, 425–432.CrossRefGoogle Scholar
  35. Vias, J. M., et al. (2002). Preliminary proposal of a method for vulnerability mapping in carbonate aquifers. In F. Caraso, J. J. Duran, & B. Andreo (Eds.) Carst and environment (pp. 75–83).Google Scholar
  36. Voss, F. D. (2003). Development and testing of methods for assessing and mapping agricultural areas susceptible to atrazine leaching in the State of Washington. U.S. Geological Survey Water—Resources Investigation Report 03-4173: 13 p.Google Scholar
  37. Vrba, V., & Zaporozec, A. (1994). Guidebook on mapping ground water vulnerability. International association of hydrogeologists (vol. 16, 90 p).Google Scholar
  38. Witkowski, A. J., Kowalczyk, A., & Vrba, J. (2007). Groundwater vulnerability assessment and mapping. In: selected papers from the groundwater vulnerability assessment and mapping conference, Ustron, Poland, 2004 (263p). London, UK: Taylor and Francis group.Google Scholar
  39. Zekter, I. S., Belousova, A. P., & Yu, Dudov V. (1995). Regional assessment and mapping of groundwater vulnerability to contamination. Environmental Geology, 25, 225–231.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratory of HydrogeologyInstitute of Geology and SeismologyChisinauMoldova
  2. 2.School for the EnvironmentUniversity of Massachusetts BostonBostonUSA

Personalised recommendations