Skip to main content

An Optimized Control Volume/Finite Element Method (CV/FEM) for Non-Isothermal Liquid Composite Molding (LCM) Process

  • Chapter
  • First Online:
Thermo-Mechanics Applications and Engineering Technology

Abstract

The numerical simulation of a mass and heat transfer model for the curing stage of the resin transfer molding (RTM) process is known as a useful method to analyze the process before the mold is actually built. The optimization of non-isothermal mold filling simulation time without losing the efficiency remains an important challenge in the RTM process. These were some reasons that motivate our work, in which we are interested in the amelioration of the performance of the RTM simulation code in terms of execution time and memory space occupation. A modified control volume/finite element method (CV/FEM) is developed to solve the resin flow problem. Full advantage is taken of some of the intrinsic characteristics of this method, in particular, its capability of eliminating the need to re-mesh continuously the resin-filled domain at each time step. Our developed model leads to the numerical prediction of temperature, pressure distribution, and flow front position with great accuracy, together with a precise representation of the thermal (spatiotemporal) behavior of the resin inside the mold. Furthermore, we have improved new methods to optimize the cycle time, since despite the intense interest in the modeling and simulation of RTM process, minimization of mold filling time without losing the part quality remains an important issue in the resin transfer molding process. Thereby, the effects of several parameters on the filling process are deeply investigated. Moreover, we tried to identify the thermal conductivity of a composite material by inverse analysis of the heat conduction phenomenon in resin transfer molding process. The Gauss–Newton–Levenberg–Marquardt method was privileged. The validity of our approaches is evaluated with analytical and experimental results where an excellent agreement was found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbassi A, Shahnazari MR (2004) Numerical modeling of mould filling and curing in non-isothermal RTM process. Appl Therm Eng 24(16):1–13

    Article  MATH  Google Scholar 

  • Adaileh AD, Zihlif AM, Ragosta G (2011) Optical and thermal properties of oil shale/polystyrene composites. J Reinf Plast Compos 30:741–748

    Article  Google Scholar 

  • Assaf B, Menge H, Sobotka V, Trochu F (2005) Development of a characterization mold to measure the transverse thermal conductivity of a composite material by inverse analysis. J Reinf Plast Compos 24:1837–1854

    Article  Google Scholar 

  • Auzinger W, Fabianek C (2001) Iterative solution of large linear systems arising in the 3-dimensional modelling of an electric field in human thigh, Technical Report, ANUM Preprint No. 12/04, Institute for Analysis and Scientific Computing, Vienna University of Technology

    Google Scholar 

  • Azizi R (2009) Different implementations of inverse finite element method in sheet metal forming. Mater Des 30(8):2975–2980

    Article  Google Scholar 

  • Barooah P, Berker B, Sun JQ (2001) J Manuf Sci Eng ASME 123:240–247

    Article  Google Scholar 

  • Bennon WD, Incropera FP (1987) A continuum model for momentum, heat and species transport in binary solid liquid phase change systems, 1, model formulation. Int J Heat Mass Tran 30(10):2161–2170

    Article  MATH  Google Scholar 

  • Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann Phy 24:636

    Article  Google Scholar 

  • Bruschke MV, Advani SG (1990) A finite element/control volume approach to mold filling in anisotropic porous media. Polym Compos 11(6):398–405

    Article  Google Scholar 

  • Cai Z (1992) Simplified mold filling simulation in resin transfer moulding. J Compos Mater 26:2606–2629

    Article  Google Scholar 

  • Chang CY (2003a) Tow impregnation of unidirectional fibrous preform during resin transfer molding. J Reinf Plast Compos 22(11):1003–1016

    Article  Google Scholar 

  • Chang CY (2003b) Numerical simulation on the void distribution in the fibre mats during the filling stage of RTM. J Reinf Plast Compos 22:1437–1454

    Article  Google Scholar 

  • Chang CY, Hourng LW (1998) Numerical simulation for the transverse impregnation in resin transfer moulding. J Reinf Plast Compos 17:165–182

    Article  Google Scholar 

  • Chen B, Leng AHD, Chou TW (2001) A non linear compaction model for fibrous performs. Compos A Appl Sci Manuf 32:701–707

    Article  Google Scholar 

  • Cheng SC, Vachon RI (1969) The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. Int J Heat Mass Transfer 12(3):249–264

    Article  Google Scholar 

  • Coulter JP, Guceri S (1988) Resin impregnation during the manufacturing of composite materials subject to prescribed injection rate. J Reinf Plast Compos 7:200–219

    Article  Google Scholar 

  • Crank J (1988) Free and moving boundary problems. Clarendon Press, Oxford, UK

    MATH  Google Scholar 

  • De Aranjo FFT, Garret W, Rosemberg HM (1976) Mechanical and thermophysical properties of EVA copolymer filled with nickel particles. In: ICCM proceedings of international conference of composites materials, vol 2. Toronto, Canada, p 568

    Google Scholar 

  • Godovsky YK, Privalko VP (1995) Thermal and electrical conductivity of polymer materials. Springer, Berlin

    Google Scholar 

  • Gonzalez-Romero JF, Mascosko CW (1985) Viscosity rise during radical crosslinking polymerization with inhibition. J Rheol 29:259–272

    Article  Google Scholar 

  • Gurland J (1966) An estimate of contact and continuity of dispersions in opaque samples. Trans Metall Soc AIME 236:642

    Google Scholar 

  • Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33:3125

    Article  MATH  Google Scholar 

  • Hashin Z, Wendt FW, Liebowitz H (1970) Theory of composite materials. In: Proceedings of the fifth symposium on naval structural mechanics. Pergamon Press, Oxford, p 201

    Google Scholar 

  • Hatta H, Taya M (1985) Effective thermal conductivity of a misoriented short fiber composite. J Appl Phys 58:2478

    Article  Google Scholar 

  • Hattabi M, Snaike I, Echaabi J, Bensalah MO (2005) Simulation of flow front in liquid composite moulding (in French). Comptes Rendus Mécanique 333(7):585–591

    Article  Google Scholar 

  • Kroschwitz JI (1989) Encyclopedia of polymer science and engineering, 2nd edn. Wiley, New York

    Google Scholar 

  • Kumlutas D, Tavman IH, Turhan Coban M (2003) Thermal conductivity of particle filled polyethylene composite materials. Compos Sci Technol 63:113–117

    Article  Google Scholar 

  • Lee LJ, Young WB, Lin RJ (1994) Mold filling and cure modeling of RTM and SRIM processes. Compos Struct 27:109–120

    Article  Google Scholar 

  • Li Z, Chen H, Cai L, Zhu Z, Wang Y, Zhang Y (2012) Prediction of thermal conductivity of SiC-filled emulsion-polymerized styrenebutadiene rubber composites by finite element method. J Reinf Plast Compos 31:1586–1598

    Article  Google Scholar 

  • Ma L, Srivastava R, Barpanda D, Fowler T, Theophanous T, Verghese N (2013) An inverse approach to characterize anisotropic thermal conductivities of a dry fibrous preform composite. J Reinf Plast Compos 32(24):1916–1927

    Article  Google Scholar 

  • Meuer HW, Strohmaier E, Dongarra JJ, Simon H (2001) Top500 supercomputersites. In: 16th International supercomputer conference: applications—architectures—trends, http://www.netlib.org/benchmark/top500.html, http://www.top500.org/

  • Morren G, Sol H, Verleye B, Lomov SV (2007) Permeability identification of a stereolithography specimen using an inverse method. In: SEM annual conference & exposition on experimental and applied mechanics, Massachusetts, USA

    Google Scholar 

  • Mottram JT, Taylor R (1991) Thermal transport properties, International encyclopaedia of composite, vol 5. VCH, New York

    Google Scholar 

  • Nearing J (2003) Partial differential equations. In: Mathematical tools for physics. University of Miami, FL, USA, pp 327–330

    Google Scholar 

  • Nielson D, Pitchumani R (2001) Compos A Appl Sci Manuf 32:1789–1803

    Article  Google Scholar 

  • Nielson D, Pitchumani R (2002) Compos Sci Technol 62:283–298

    Article  Google Scholar 

  • Rashno A, Damabi RM, Ahmadi S, Sarai MAH (2014) Effects of hexamethylenediisocyanate coupling agent on physical, mechanical, and thermal properties of wood plastic composites. J Reinf Plast Compos 33:1294–1304

    Article  Google Scholar 

  • Raymer J (1991) Resin transfer molding with flow based machinery. SME Technical Paper EM, vol 91–112, pp 1–5

    Google Scholar 

  • Saad A, Echchelh A, Hattabi M, El Ganaoui M (2011) A fast computational model to the simulation of non-isothermal mould filling process in resin transfer moulding. J Polym Compos 32(6):857–868

    Google Scholar 

  • Saad A, Echchelh A, Hattabi M, El Ganaoui M (2012a) Numerical simulation and analysis of flow in resin transfer molding process. Fluid Dyn Mater Process 8(3):277–294

    Google Scholar 

  • Saad A, Echchelh A, Hattabi M, El Ganaoui M (2012b) Optimization of the cycle time in resin transfer moulding process by numerical simulation Journal of reinforced plastics and composites. J Reinf Plast Compos 31(20):1388–1399

    Google Scholar 

  • Saad A, Echchelh A, Hattabi M, El Ganaoui M (2012c) Numerical simulation of thickness variation effect on resin transfer molding process. J Polym Compos 33(1):10–21

    Google Scholar 

  • Saad A, Echchelh A, Hattabi M, El Ganaoui M (2014) The identification of effective thermal conductivity for fibrous reinforcement composite by inverse method. J Reinf Plast Compos 33(23):2183–2191

    Google Scholar 

  • Saint Macary L, Nouailhas H, Corn S (2014) Biocompositepar pultrusion: performances thermiques, Mécaniques et environnementales et applications pour le batiments. Ecobat Sci Tech 126–135

    Google Scholar 

  • Shirazi A, Varvani-Farahani A, Lu H (2010) An inverse analysis of warpage for trilayer thin-plate under thermal cycles. Mater Des 31:4219–4228

    Google Scholar 

  • Shojaei A (2006) Numerical simulation of three-dimensional flow and analysis of filling process in compression resin transfer moulding. Compos Part A 37:1434–1450 (Elsivier)

    Article  Google Scholar 

  • Shojaei A, Ghaffarian SR, Karimian SMH (2003a) Numerical simulation of three-dimensional mold filling in resin transfer molding. J Reinf Plast Compos 22(16):1497–1529

    Article  Google Scholar 

  • Shojaei A, Ghaffarian SR, Karimian SMH (2003b) Modeling and simulation approaches in the resin transfer molding process—a review. Polym Compos 24(4):525–544

    Article  Google Scholar 

  • Shojaei A, Ghaffarian SR, Karimiann SMH (2003c) Numerical analysis of controlled injection strategies in resin transfer molding. J Compos Mater 37(11):1011–1035

    Article  Google Scholar 

  • Shojaei A, Ghaffarian SR, Karimian SMH (2004) Three-dimensional process cycle simulation of composite parts manufactured by resin transfer molding. Compos Struct 65:381–390

    Article  Google Scholar 

  • Song X (2003) Vacuum Assisted Resin Transfer Molding (VARTM): model development and verification. Thèse de doctorat de la faculté de Virginia

    Google Scholar 

  • Soyez O (2002) Etude d’un solveur parallèle pour la simulation de la houle, Mémoire diplôme d’Etudes approfondies, Informatique parallèle et répartie, Combinatoire, université de Picardie - Jules Verne

    Google Scholar 

  • Sun N-Z (1994) Inverse problems in groundwater modeling. Kluwer Academic Publishers, London

    Google Scholar 

  • Tarawneh MA, Ahmad SH, Rasid R, Noum SYE, Kong I (2011) Thermal behavior of MWNT-reinforced thermoplastic natural rubber nanocomposites. J Reinf Plast Compos 30:216–221

    Article  Google Scholar 

  • Taya M, Arsenault RJ (1989) Metal matrix composites: thermomechanical behaviour. Pergamon Press, Oxford

    Google Scholar 

  • Torquato S (1991) Random heterogeneous media: microstructure and improved bounds on effective properties. Appl Mech Rev 44(2):37

    Article  MathSciNet  Google Scholar 

  • Torquato S, Stell G (1983) Microstructure of two-phase random media. II. The Mayer-Montroll and Kirkwood- Salsburg hierarchies. J Chem Phys 78:3262. Retrieved from http://cherrypit.princeton.edu/papers/paper-4.pdf

  • Trochu F, Gauvin R (1992) Limitations of a boundary-fitted finite difference method for the simulation of the resin transfer molding process. J Reinf Plast Compos 11(7):772–786

    Article  Google Scholar 

  • Trochu F, Gauvin R, Gao DM (1993) Numerical analysis of the resin transfer molding process by the Finite Element Method. Adv Polym Technol 12:329–342

    Article  Google Scholar 

  • Tsuruta S, Misztal I, Stranden I (2001) Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications. J Anim Sci 79:1166–1172

    Article  Google Scholar 

  • Tucker CL III, Dessenberger RB (1994) Governing equations for flow and heat transfer in stationary fiber beds. In: Advani SG (ed) Flow and rheology in polymer composites manufacturing. Elsevier Science BV, Amsterdam (chapter 8)

    Google Scholar 

  • Um MK, Lee WI (1991) A study on mould filling process in resin transfer moulding. Polym Eng Sci 31:765–771

    Article  Google Scholar 

  • Verleye B, Lomov S, Long A (2007) Permeability of textile reinforcements: efficient prediction and validation. In: Kageyama K, Ishikawa T, Takeda N et al (eds) Proceedings of the 6th International conference on composite materials, Japan Society for Composite Materials, pp 220–221

    Google Scholar 

  • Voller VR, Prakash C (1987) A fixed grid numerical modelling methodology for convection diffusion mushy region phase change problems. Int J Heat Mass Tran 30(8):1709–1719

    Article  Google Scholar 

  • Yoo YE, Lee WI (1996) Numerical simulation of the resin transfer mould filling process using the boundary element method. Polym Compos 17:368–374

    Article  Google Scholar 

  • Zhang Y, Alexander JID, Ouazzani J (1994) A Chebychev collocation method for moving boundaries heat transfer and convection during directional solidification. Int J Numer Meth Heat Fluid Flow 4(2):115–129

    Article  Google Scholar 

  • Zhu B, Ma J, Wang J, Jun W, Dongsheng P (2012) Thermal, dielectric and compressive properties of hollow glass microsphere filled epoxy-matrix composites. J Reinf Plast Compos 31:1311–1326

    Article  Google Scholar 

  • Zribi T, Khalfallah A, Bel Hadj Salah H (2013) Experimental characterization and inverse constitutive parameters identification of tubular materials for tube hydroforming process. Mater Des 49:866–877

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saad, A., Echchelh, A., Hattabi, M., El Ganaoui, M. (2018). An Optimized Control Volume/Finite Element Method (CV/FEM) for Non-Isothermal Liquid Composite Molding (LCM) Process. In: Driss, Z., Necib, B., Zhang, HC. (eds) Thermo-Mechanics Applications and Engineering Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-70957-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70957-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70956-7

  • Online ISBN: 978-3-319-70957-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics