Spectral Radius of Graphs

  • Dragan Stevanović
Part of the Advanced Courses in Mathematics - CRM Barcelona book series (ACMBIRK)


Graphs are naturally associated with matrices, as matrices provide a simple way of representing graphs in computer memory. The basic one of these is the adjacency matrix, which encodes existence of edges joining vertices of a graph. Knowledge of spectral properties of the adjacency matrix is often useful to describe graph properties which are related to the density of the graph’s edges, on either a global or a local level. For example, entries of the principal eigenvector of adjacency matrices have been used in the study of complex networks, introduced under the name eigenvector centrality by the renowned mathematical sociologist Phillip Bonacich back in 1972; see [5, 6].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dragan Stevanović
    • 1
  1. 1.Mathematical InstituteSerbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations