Skip to main content

MOS Transistors and Field Controlled Wide Bandgap Devices

  • Chapter
  • First Online:
Semiconductor Power Devices

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, A., Ryu, S.H.: Status of SiC power devices and manufacturing issues. In: CS MANTECH Conference, pp. 215–218. Vancouver, Canada, 24–27 Apr 2006

    Google Scholar 

  2. Beier-Möbius, M., Lutz, J.: Breakdown of gate oxide of 1.2 kV SiC-MOSFETs under high temperature and high gate voltage. In: Proceedings of the PCIM Europe, Nuremberg (2016)

    Google Scholar 

  3. Beier-Möbius, M., Lutz, J.: Breakdown of gate oxide of SiC-MOSFETs and Si-IGBTs under high temperature and high gate voltage. In: Proceedings of the PCIM Europe, Nuremberg (2017)

    Google Scholar 

  4. Belverde, G., Magrì, A., Melito, M., Musumeci, S., Pagano, R., Raciti, A.: Efficiency improvement of synchronous buck converters by integration of Schottky diodes in low-voltage MOSFETs. In: Proceedings of the IEEE ISIE, pp. 429–434 (2005)

    Google Scholar 

  5. Calafut, D., Trench power MOSFET lowside switch with optimized integrated Schottky diode. In: Proceedings of the International Symposium on Power Semiconductor Devices & ICs, pp. 397–400 (2004)

    Google Scholar 

  6. Chang, M.-H., Rutter, P.: Optimizing the trade-off between the RDS(on) of power MOSFETs and linear mode perfomance by local modification of MOSFET gain. In: Proceedings of the 28th ISPSD, pp. 379–382. Prague, Czech Republic (2016)

    Google Scholar 

  7. Chen, X.-B., Sin, J.K.O.: Optimisation of the specific on-resistance of the COOLMOS. IEEE Trans. Electron Device 48(2), 344–348 (2001)

    Google Scholar 

  8. Chen, Y., Liang, Y., Samudra, G.: Theoretical analyses of oxide-bypassed superjunction power metal oxide semiconductor field effect transistor devices. Jpn. J. Appl. Phys. 44(2), 847–856 (2005)

    Article  Google Scholar 

  9. Chen, K.J: Fluorine-implanted enhancement-mode transistors. In: Meneghini, M., Meneghesso, G., Zanoni, E. (eds.) Power GaN Devices – Materials, Applications and Reliability. Springer, Switzerland (2017)

    Google Scholar 

  10. Chowdhury, S., Swenson, B.L., Wong, M.H., Mishra, U.K.: Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 28, 074014 (2013)

    Article  Google Scholar 

  11. Collins, H.W., Pelly, B.: HEXFET, a new power technology cuts on-resistance boosts rating. Electron. Des. 17, 36 (1979)

    Google Scholar 

  12. Deboy, G., März, M., Stengl, J.P., Sack, H., Tihanyi, J., Weber, H.: A new generation of high voltage MOSFETs breaks the limit line of silicon. In: Proceedings of IEDM, pp. 683–685 (1998)

    Google Scholar 

  13. De Santi C.: Field- and time-dependent degradation of power gallium nitride (GaN) high electron mobility transistors (HEMTs). In: Tutorial ESREF, Halle (2016)

    Google Scholar 

  14. Dolny, G.M., Sapp, S., Elbanhaway, A., Wheatley, C.F.: The influence of body effect and threshold voltage reduction on trench MOSFET body diode characteristics. In: Proceedings ISPSD, pp. 217–220. Kitakyushu (2004)

    Google Scholar 

  15. EPIGAN Data sheet HV 650

    Google Scholar 

  16. Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. Lond. Ser. A 119, 173 (1928)

    Article  MATH  Google Scholar 

  17. Grant, D.A., Gowar, J.: Power MOSFETS – Theory and Application. Wiley, New York (1989)

    Google Scholar 

  18. Gurfinkel, M., et al.: Time-dependent dielectric breakdown of 4H-SiC/SiO2 MOS capacitors. IEEE Trans. Device Mater. Reliab. 8(4), 635–641 (2008)

    Article  Google Scholar 

  19. Hilt, O., Bahat-Treidela, E., Knauer, A., Brunner, F., Zhytnytska, R., Würfl, J.: High-voltage normally OFF GaN power transistors on SiC and Si substrates. MRS Bull. 40(05), 418–424 (2015)

    Article  Google Scholar 

  20. Hofstein, S.R., Heiman, F.P.: The silicon insulated-gate field-effect transistor. Proc. IEEE 51(9), 1190–1202 (1963)

    Article  Google Scholar 

  21. Honea, J., Zhan Wang, Z., Wu, Y.: Design and implementation of a high-efficiency three-level inverter using GaN HEMTs. In: Proceedings of the PCIM Europe, pp. 486–492 (2015)

    Google Scholar 

  22. Hua, M., Zhang, Z., Qian, Q., Wei, J., Bao, Q., Tang, G., Chen, K.J.: High-performance fully-recessed enhancement-mode GaN MIS-FETs with crystalline oxide interlayer. In: Proceedings of the 29th ISPSD, pp. 89–92. Sapporo (2017)

    Google Scholar 

  23. Imaizumi, M., Tarui, Y.: 2 kV Breakdown voltage SiC MOSFET technology. Mitsubishi Electric R&D Progress Report, March 2004. http://global.mitsubishielectric.com/pdf/advance/vol105/08_RD1.pdf (2004)

  24. Ishida, M., Ueda, T.: GaN‐based gate injection transistors for power switching applications. In: Japan‐EU Symposium on Power Electronics. Tokyo, 15–16 Dec 2015

    Google Scholar 

  25. Kaneko, S., Kuroda, M., Yanagihara, M., Ikoshi, A., Okita, H., Morita, T., Tanaka, K., Hikita, M., Uemoto, Y., Takahashi, S., Ueda, T.: Current-collapse-free operations up to 850 V by GaN-GIT utilizing hole injection from drain. In: Proceedings of the 27th ISPSD, Hong Kong (2015)

    Google Scholar 

  26. Kondekar, P.N., Oh, H., Kim, Y.B.: Study of the degradation of the breakdown voltage of a super-junction power MOSFET due to charge imbalance. J. Korean Phys. Soc. 48(4), 624–630 (2006)

    Google Scholar 

  27. Lee, H.G., Oh, S.Y., Fuller, G.: A simple and accurate method to measure the threshold voltage of an enhancement-mode MOSFET. IEEE Trans. Electron Devices 29(2), 346–348 (1982)

    Article  Google Scholar 

  28. Liang, Y., Gan, K., Samudra, G.: Oxide-bypassed VDMOS (OBVDMOS). An alternative to superjunction high voltage MOS power devices. IEEE Electron Device Lett. 22, 407–409 (2001)

    Article  Google Scholar 

  29. Lidow, A., Herman, T., Collins, H.W.: Power MOSFET technology. In: 1979 International Electron Devices Meeting, vol. 25, pp. 79–83 (1979)

    Google Scholar 

  30. Liu, C., Salih, A., Padmanabhan B., Jeon, W., Moens, P., Tack, M., Debacker E.: Development of 650v cascode GaN technology. In: Proceedings of the PCIM Europe, pp. 994–1001 (2015)

    Google Scholar 

  31. Lorenz, L., März, M.: CoolMOSTM – a new approach towards high efficiency power supplies. In: Proceedings of the 39th PCIM, pp. 25–33. Nuremberg (1999)

    Google Scholar 

  32. Lutz, J., Aichinger, T., Rupp, R.: Reliability evaluation. In: Suganuma, K. (ed.) Wide Bandgap Power Semiconductor Packaging: Materials, Components, and Reliability. Woodhead Publishing, Elsevier (2018) (in preparation)

    Google Scholar 

  33. Michel, M.: Leistungselektronik, 3rd edn. Springer, Berlin (2003)

    Book  Google Scholar 

  34. Mimura, T., Hiyamizu, S., Fujii, T., Nanbu, K.: A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs heterojunctions. Jpn. J. Appl. Phys. 19(5), L225–L227 (1980)

    Article  Google Scholar 

  35. Mitlehner, H., Bartsch, W., Dohnke, K.O., Friedrichs, P., Kaltschmidt, R., Weinert, U., Weis, B., Stephani, D.: Dynamic characteristics of high voltage 4H-SiC vertical JFETs. In: Proceedings of the 11th ISPSD, pp. 339–342 (1999)

    Google Scholar 

  36. Miura, N., et al.: Successful development of 1.2 kV 4H-SiC MOSFETs with the Very low on-resistance of 5 mΩcm2. In: Proceedings of the 18th ISPSD, Naples, Italy (2006)

    Google Scholar 

  37. Miyamoto, H., et al.: Enhancement-mode GaN-on-Si MOS-FET using Au-free Si process and its operation in PFC system with high-efficiency. In: Proceedings of the 27th ISPSD, pp. 209–212. Honkong (2015)

    Google Scholar 

  38. Morita, T., Tanaka, K., Ujita, S., Ishida, M., Uemoto, Y., Ueda, T.: Recent progress in gate injection technology based GaN power devices. In: Proceedings of the ISPS, Prague, pp 34–37 (2014)

    Google Scholar 

  39. Muhsen, H.: Ph.D. thesis, Chemnitz University of Technolgy (2017)

    Google Scholar 

  40. Nakamura, T., Nakano, Y., Aketa, M., Nakamura, R., Mitani, S., Sakairi, H., Yokotsuji, Y.: High performance SiC trench devices with ultra-low ron. In: IEEE International Electron Devices Meeting (IEDM) (2011)

    Google Scholar 

  41. Nicolai, U., Reimann, T., Petzoldt, J., Lutz. J.: Application Manual Power Modules. Semikron, ISLE Verlag, Ilmenau (2000)

    Google Scholar 

  42. Pawel, I., Siemieniec, R., Born, M.: Theoretical evaluation of maximum doping concentration, breakdown voltage and on-state resistance of field-plate compensated devices. In: Proceedings of ISPS’08, Prague (2008)

    Google Scholar 

  43. Polenov, D., Lutz, J., Pröbstle, H., Brösse, A.: Influence of parasitic inductances on transient current sharing in parallel connected synchronous rectifiers and Schottky-Barrier diodes. IET Circ. Devices Syst. 1(5), 387–394 (2007)

    Article  Google Scholar 

  44. Rumyantsev, S., Shur, M., Levinshtein, M., Ivanov, P., Palmour, J., Agarwal, A., Hull, B., Ryu, S.H.: Channel mobility and on-resistance of vertical double implanted 4H-SiC MOSFETs at elevated temperatures. Semicond. Sci. Technol. 24(7), 075011 (2009)

    Article  Google Scholar 

  45. Ryu, S.H., et al.: 10 kV, 5A 4H-SiC Power DMOSFET. In: Proceedings of the 18th ISPSD, Naples, Italy (2006)

    Google Scholar 

  46. Saito, W., Takada, Y., Kuraguchi, M., Tsuda, K., Omura, I., Ohashi, H.: High breakdown voltage AlGaN/GaN power-HEMT design and high current density switching behavior. IEEE Trans. Electron Devices 50(12), 2528–2531 (2003)

    Article  Google Scholar 

  47. Schlund, B., et al.: A new physic-based model for time-dependent-dielectric-breakdown. In: Proceedings of the International Reliability Physics Symposium, pp. 84–92 (1996)

    Google Scholar 

  48. Shenai, K., Baliga, B.J.: Monolithically integrated power MOSFET and Schottky diode with improved reverse recovery characteristics. IEEE Trans. Electron Devices 37(3), 1167–1169 (1990)

    Article  Google Scholar 

  49. Siemieniec, R., Hirler, F., Schlögl, A., Rösch, M., Soufi-Amlashi, N., Ropohl, J., Hiller, U.: A new fast and rugged 100 V power MOSFET. In: Proceedings of EPE-PEMC, Portoroz, Slovenia (2006)

    Google Scholar 

  50. Siemieniec, R., Nöbauer, G., Domes, D.: Stability and performance analysis of a SiC-based cascode switch and an alternative solution. Microelectron. Reliab. 52, 509–518 (2012)

    Article  Google Scholar 

  51. Singh, R., Hefner, A.R.: Reliability of SiC MOS devices. Solid-State Electron. 48, 1717–1720 (2004)

    Article  Google Scholar 

  52. Sodhi, R., Malik, R., Asselanis, D., Kinzer, D.: High-density ultra-low Rdson 30 volt N-channel trench FETs for DC/DC converter applications. In: Proceedings of ISPSD’99, pp. 307–310 (1999)

    Google Scholar 

  53. Spirito, P., Breglio, G., d’Alessandro, V., Rinaldi, N.: Thermal instabilities in high current power MOS devices: experimental evidence, electro-thermal simulations and analytical modeling. In: Proceedings of the 23rd International Conference on Microelectronics (MIEL), pp. 23–30. Serbia, Europe (2002)

    Google Scholar 

  54. Sque, S.: High-voltage GaN-HEMT devices, simulation and modelling. In: Tutorial at ESSDERC, Bucharest (2013)

    Google Scholar 

  55. Stengl, J.P., Tihanyi, J.: Leistungs-MOSFET-Praxis. Pflaum-Verlag, München (1992)

    Google Scholar 

  56. Sze, S.M., Physics of semiconductor devices. Wiley, New York (1981)

    Google Scholar 

  57. Ueda, D.: Properties and advantages of gallium nitride. In: Meneghini, M., Meneghesso, G., Zanoni, E.: Power GaN Devices – Materials, Applications and Reliability. Springer, Switzerland (2017)

    Google Scholar 

  58. Uemoto, Y., et al.: Gate injection transistor (GIT) – a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Devices 54(12), 3393–3399 (2007)

    Article  Google Scholar 

  59. Uhnevionak, B., Burenkov, S., Strenger, C., Ortiz, G., Bedel-Pereira, E., Mortet, V., Cristiano, F., Bauer, A.J., Pichler, P.: Comprehensive study of the electron scattering mechanisms in 4H-SiC MOSFETs. IEEE Trans. Electron Devices 62(8), 2562–2570 (2015)

    Article  Google Scholar 

  60. Williams, R.K., Darwish, M.N., Blanchard, R.A., Siemieniec, R., Rutter, P., Kawaguchi, Y.: The trench power MOSFET – part II: application specific VDMOS, LDMOS, packaging, and reliability. IEEE Trans. Electron Devices 64(3), 692–712 (2017)

    Google Scholar 

  61. Würfl, J.: GaN power switching transistors: survey on device concepts and technology. In: Tutorial GaN Based Power Electronics, Organized by Oliver Häberlen, 45th European Solid-State Device Research Conference ESSDERC (2015)

    Google Scholar 

  62. Zeng, J., Wheatley, C.F., Stokes, R., Kocon, C., Benczkowski, S.: Optimization of the body-diode of power MOSFETs for high efficiency synchronous rectification. In: Proceedings of the ISPSD, pp. 145–148 (2000)

    Google Scholar 

  63. Zingg, R.P.: New benchmark for RESURF, SOI, and super-junction power devices. In: Proceedings of the ISPSD, pp. 343–346. Osaka (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Lutz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutz, J., Schlangenotto, H., Scheuermann, U., De Doncker, R. (2018). MOS Transistors and Field Controlled Wide Bandgap Devices. In: Semiconductor Power Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-70917-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70917-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70916-1

  • Online ISBN: 978-3-319-70917-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics