Skip to main content

Introduction to Power Device Technology

  • Chapter
  • First Online:
Semiconductor Power Devices
  • 5233 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This function and the normal error function erf(x) = 1 – erfc(x) appear also in other diffusion processes (see next section, case c). Often the following analytical approximation for x ≥ 0 is sufficient:

    \( erfc(x) \approx { \exp }( - 1.14x - 0.7092x^{2.122} ) \)

    Its maximum error in the range 10-7 < erfc < 1 is 2‰. For negative arguments appearing in Eq. (4.16) below the approximation can be used considering that erf(–x) = –erf(x) = erfc(x) – 1.

References

  1. Ambacher, O., et al.: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85(6), 3222–3233 (1999)

    Article  Google Scholar 

  2. von Ammon, W.: Neutron transmutation doped silicon – technological and economic aspects. Nucl. Instrum. Methods Phys. Res. B63, 95–100 (1992)

    Article  Google Scholar 

  3. Barthelmeß, R., Beuermann, M., Winter, N.: New diodes with pressure contact for hard-switched high power converters. Proceedings of the EPE ‘99, Lausanne (1999)

    Google Scholar 

  4. Behet, M.: GaN—Promise to Reality: The Next Generation of Power Electronics is Taking Shape. Display + web Publication, http://www.displayplus.net/news/articleView.html?idxno=64606. Download 6 Jan 2017

  5. Benda, V., Govar, J., Grant, D.A.: Power Semiconductor Devices. Wiley, New York (1999)

    Google Scholar 

  6. Bleichner, H., Jonsson, P., Keskitalo, N., Nordlander, E.: Temperature and injection dependence of the Shockley–Read–Hall lifetime in electron irradiated n-type silicon. J. Appl. Phys. 79, 9142 (1996)

    Article  Google Scholar 

  7. Böving, H., Laska, T., Pugatschow, A., Jakobi, W.: Ultrathin 400V FS IGBT for HEV applications. In: Proceedings International Symposium on Power Semiconductor Devices and ICs ISPSD 2011, pp. 64–67 (2011)

    Google Scholar 

  8. Borisenko, V.E., Yudin, S.G.: Steady-state solubility of substitutional impurities in silicon. Phys. Status Solidi (a) 101, 123–127 (1987)

    Google Scholar 

  9. Brieger, K.P., Gerlach, W., Pelka, J.: Blocking capability of planar devices with field limiting rings. Sol. State Electron. 26, 739 (1983)

    Article  Google Scholar 

  10. Brotherton, S.D., Bradley, P.: Defect production and lifetime control in electron and γ-irradiated silicon. J. Appl. Phys. 53(8), 5720–5732 (1982)

    Article  Google Scholar 

  11. Bullis, W.M.: Properties of gold in silicon. Solid-State Electron. 9, 143–168 (1966)

    Article  Google Scholar 

  12. Chowdhury, I., Chandrasekhar, M., Klein, P.B., Caldwell, J.D., Tangali, S.: High growth rate 4H-SiC epitaxial growth using dichlorosilane in a hot-wall CVD reactor. J. Cryst. Growth 316(1), 60–66 (2011)

    Article  Google Scholar 

  13. Clark, P.: IMEC plans 450 mm wafer fab module for 2015. EETimes.com, October 11 (2011)

    Google Scholar 

  14. Crank, J.: The Mathematics of Diffusion, p. 148. Clarendon Press, Oxford (1956)

    MATH  Google Scholar 

  15. Dearnaley, G, Freeman, J.H., Gard, G.A., Wilkins, M.A.: Implantation Profiles of 32P Channelled into Silicon Crystals. Can. J. Phys. 46, 587ff (1968)

    Google Scholar 

  16. Friedrichs, P. et al.: ECPE position paper on next generation power electronics based on wide bandgap devices—challenges and opportunities for Europe http://www.ecpe.org/roadmaps-strategy-papers/strategy-papers/ (2016)

  17. Fair, R.B.: Concentration profiles of diffused dopants. In: Wang, F.F.Y., (ed) Impurity doping processes in silicon, North Holland (1981)

    Google Scholar 

  18. Falck, E.: Untersuchung der Sperrfähigkeit von Halbleiter-Bauelementen mittels numerischer Simulation, Dissertation, Berlin (1994)

    Google Scholar 

  19. Farfield, J.M., Gokhale, B.V.: Gold as recombination center in silicon. Solid State Electron. 8, 685–691 (1965)

    Google Scholar 

  20. Fuller, C.S., Ditzenberger, J.A.: Diffusion of donor and acceptor elements in silicon. J. Appl. Phys. 27, 544–553 (1956)

    Article  Google Scholar 

  21. Galindo, V., Gerbeth, G., von Ammon, W., Tomzig, E., Virbulis, J.: Crystal growth melt flow control by means of magnetic fields. Energy Convers. Manage. 43(3), 309–316 (2002)

    Article  Google Scholar 

  22. Gerlach, W.: Thyristoren. Springer, Berlin (1979)

    Book  Google Scholar 

  23. Germain, M., Derluyn, J., Leys, M., Degroote, S.: The material challenge: heteroepitaxial growth of GaN-on-Si, tutorial slides ESSCIC/ESSDERC Conference (2015)

    Google Scholar 

  24. Gorelkinskii, Y.V., Sigie, V.O., Takibaev, Z.S.: EPR of conduction electrons produced in silicon by hydrogen ion implantation. Phys. Status Solidi (a). 22, K55–57 (1974)

    Google Scholar 

  25. Guldberg, J.: Electron trap annealing in neutron transmutation doped silicon. Appl. Phys. Lett. 31(9), 578 (1977)

    Article  Google Scholar 

  26. Haas, E.W., Schnoller, M.S.: Phosphorus doping of silicon by means of neutron irradiation with protons. IEEE Trans. Electron Devices. 23(8), 803–805 (1976)

    Google Scholar 

  27. Hallén, A., Keskitalo, N., Masszi, F., Nágl, V.: Lifetime in proton irradiated silicon. J. Appl. Phys. 79, 3906 (1996)

    Article  Google Scholar 

  28. Hazdra, P., Komarnitskyy, V.: Local lifetime control in silicon power diode by ion irradiation with protons: introduction and stability of shallow donors. IET J. Circuits Devices Syst. 1(5), 321–326 (2007)

    Article  Google Scholar 

  29. Hilt, O., Bahat-Treidela, E., Knauer, A., Brunner, F., Zhytnytska, R., Würfl, J.: High-voltage normally OFF GaN power transistors on SiC and Si substrates. MRS Bull. 40(5), 418–424 (2015)

    Article  Google Scholar 

  30. Huntley, F.A., Willoughby, A.F.W.: The effect of dislocation density on the diffusion of gold in thin silicon slices. J. Electrochem. Soc. 120(3), 414–422 (1973)

    Google Scholar 

  31. Janus, H.M., Malmros, O.: Application of thermal neutron irradiation with protons for large scale production of homogeneous phosphorous doping of floatzone silicon. IEEE Trans. ED 21, 797–805 (1976)

    Google Scholar 

  32. Kao, Y.C., Wolley, E.D.: High voltage planar pn-junctions. IEEE Trans El. Dev. 55, 1409 (1967)

    Google Scholar 

  33. El-Kareh, B.: Fundamentals of Semiconductor Processing Technology. Kluwer Academic Publishers, Boston (1995)

    Book  Google Scholar 

  34. Kennedy, D.P., O’Brien, R.R.: Analysis of the impurity atom distribution near the diffusion mask for a planar p-n junction. IBM J. Res. Dev. 9, 179–186 (1965)

    Article  Google Scholar 

  35. Klug, J.N., Lutz, J., Meijer, J.B.: n-type doping of silicon by proton implantation. In: Proceedings of the 2011 14th European Conference on Power Electronics and Applications EPE (2011)

    Google Scholar 

  36. Krause, O., Pichler, P., Ryssel, H.: Determination of aluminum diffusion parameters in silicon. J. Appl. Phys. 91(9) (2002)

    Google Scholar 

  37. Krüger, J., Kim, Y., Subramanya, S., Weber, E.R.: Towards the development of defect-free GaN substrates: defect control in hetero-epitaxially grown GaN by new buffer layer design. Final Report 1997–1998 for MICRO Project 97-202, Berkley. http://www2.lbl.gov/tech-transfer/publications/1461pub.pdf

  38. Lark-Horovitz, K.: Nuclear-bombarded semi-conductors. In: Semiconductor Materials, Proceedings of a Conference at University of Reading. Butterworths, London, 1951, pp. 47–69 (1951)

    Google Scholar 

  39. LaPedus, M.: Industry Agrees on First 450-mm Wafer Standard. EETimes 22 Oct 2008

    Google Scholar 

  40. Laska, T., Matschitsch, M., Scholz, W.: Ultra thin-wafer technology for a new 600V-NPT-IGBT. In: Proceedings IEEE International Symposium on Power Semiconductor Devices and IC’s, ISPSD ‘97, pp. 361–364 (1997)

    Google Scholar 

  41. Li, Z., Bradt, R.C.: Thermal expansion of the hexagonal (4H) polytype of SiC. J. Appl. Phys. 60(2) (1986)

    Google Scholar 

  42. Lisiak, K.P., Milnes, A.G.: Energy levels and concentrations for platinum in silicon. Solid-State Electron. 18, 533–540 (1975)

    Article  Google Scholar 

  43. Lutz, J.: Axial recombination centre technology for freewheeling diodes. In: Proceedings of the 7th EPE, Trondheim, 1.502 (1997)

    Google Scholar 

  44. Lutz, J., Südkamp, W., Gerlach, W.: IMPATT oscillations in fast recovery diodes due to temporarily charged radiation induced deep levels. Solid-State Electron. 42(6), 931–938 (1998)

    Google Scholar 

  45. Miller, M.D.: Differences between platinum- and gold-doped silicon power devices. IEEE Trans. Electron. Dev. 23(12) (1976)

    Google Scholar 

  46. Monakhov, E.V., Avset, B.S., Hallen, A., Svensson, B.G.: Formation of a double acceptor center during divacancy annealing in low-doped high-purity oxygenated Si. Phys. Rev. B 65, 233207 (2002)

    Article  Google Scholar 

  47. von Münch, W.: Einführung in die Halbleitertechnologie. B.G. Teubner, Stuttgart, Germany (1993)

    Book  Google Scholar 

  48. Niwa, F., Misumi, T., Yamazaki, S., Sugiyama, T., Kanata, T., Nishiwaki, K.: A study of correlation between CiOi defects and dynamic avalanche phenomenon of PiN diode using he ion irradiation. In: Proceedings of the PESC, Rhodos (2008)

    Google Scholar 

  49. Novak, W.D., Schlangenotto, H., Füllmann, M.: Improved Switching Behaviour of Fast Power Diodes. PCIM Europe (1989)

    Google Scholar 

  50. Ohmura, Y., Zohta, Y., Kanazawa, M.: Electrical properties of n-type Si layers doped with proton bombardment induced shallow donors. Solid State Commun. 11(1), 263–266 (1972)

    Article  Google Scholar 

  51. Pichler, P.: Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon. Springer Wien, New York (2004)

    Google Scholar 

  52. Quay, R.: Gallium Nitride Electronics. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  53. Roder, C., Einfeldt, S., Figge, S., Hommel, D.: Temperature dependence of thermal expansion of GaN. Phys. Rev. B 72, 085218 (2005)

    Article  Google Scholar 

  54. Ryssel, H., Ruge, I.: Ion Implantation. Wiley, New York (1986)

    Google Scholar 

  55. Schnöller, M.S.: Breakdown behaviour of rectifiers and thyristors made from striation-free silicon. IEEE Trans. Electron Devices ED 21, 313–314 (1974)

    Article  Google Scholar 

  56. Schlangenotto, H., Silber, D., Zeyfang, R.: Halbleiter-Leistungsbauelemente - Untersuchungen zur Physik und Technologie. Wiss. Ber. AEG-Telefunken 55(1–2) (1982)

    Google Scholar 

  57. Schulze, H.J., Kuhnert, R.: Realization of high voltage planar junction termination for power devices. Solid State Electron. 32(S), 175 (1989)

    Google Scholar 

  58. Schulze, H.J., Niedernostheide, F.J., Schmitt, M., Kellner-Werdehausen, U., Wachutka, G.: Influence of irradiation-induced defects on the electrical performance of power devices. In: ECS Proceedings, 2002-20, pp. 320–335 (2002)

    Google Scholar 

  59. Schulze, H.J., Öfner, H., Niedernostheide, F.J., Laven, J.G., Felsl, H.P., Voss, S., Schwagmann, A., Jelinek, M., Ganagona, N., Susiti, A., Wübben, T., Schustereder, W., Breymesser, A., Stadtmüller, M., Schulz, A., Kurz, T., Lükermann, F.: Use of 300 mm magnetic Czochralski wafers for the fabrication of IGBTs. In: Proceedings of the 28st ISPSD, Prague, pp. 355–359 (2016)

    Google Scholar 

  60. Siemieniec, R., Netzel, M., Südkamp, W., Lutz, J.: Temperature dependent properties of different lifetime killing technologies on example of fast diodes. IETA2001, Cairo (2001)

    Google Scholar 

  61. Siemieniec, R., Südkamp, W., Lutz, J.: Determination of parameters of radiation induced traps in silicon. Solid-State Electron. 46, 891–901 (2002)

    Article  Google Scholar 

  62. Siemieniec, R., Niedernostheide, F.J., Schulze, H.J., Südkamp, W., Kellner-Werdehausen, U., Lutz, J.: Irradiation-induced deep levels in silicon for power device tailoring. J. Electrochem. Soc. 153(2), G108–G118 (2006)

    Article  Google Scholar 

  63. Siltronic, A.G.: Float Zone Silicon at Siltronic. www.siltronic.com/int/media/publication/…/Leaflet_Floatzone_en.pdf (2006)

  64. Stengl, R., Gösele, U.: Variation of lateral doping – a new concept to avoid high voltage breakdown of planar junctions. In: IEEE IEDM 85, pp. 154 ff (1985)

    Google Scholar 

  65. Südkamp, W.: DLTS-Untersuchung an tiefen Störstellen zur Einstellung der Trägerlebensdauer in Si-Leistungsbauelementen, Dissertation, Technical University of Berlin (1994)

    Google Scholar 

  66. Swenson, C.A.: Recommended values for the thermal expansivity of silicon from 0 to 1000 K. J. Phys. Chem. Ref. Data. 12, 179–182 (1983)

    Google Scholar 

  67. Sze, S.M.: VLSI Technology. McGrawHill, New York (1988)

    Google Scholar 

  68. Sze, S.M.: Semiconductor Devices, Physics and Technology, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  69. Tannenbaum, M.: Uniform n-type silicon, U.S. patent 3076732, filled 12 Dec 1959

    Google Scholar 

  70. Tannenbaum, M., Mills, A.D.: Preparation of uniform resistivity n-type silicon by nuclear transmutation. J. Electrochem. Soc. 108, 171–176 (1961)

    Article  Google Scholar 

  71. Tang, H., Fang, Z.Q., Rolfe, S., Bardwell, J.A., Raymond, S.: Growth kinetics and electronic properties of unintentionally doped semi-insulating GaN on SiC and high-resistivity GaN on sapphire grown by ammonia molecular-beam epitaxy. J. Appl. Phys. 107, 103701 (2010)

    Article  Google Scholar 

  72. Trumbore, F.A.: Solid solubilities of impurity elements in germanium and silicon. Bell Syst. Tech. J. 39, 205–233 (1960)

    Article  Google Scholar 

  73. Tsai, J.C.C.: Diffusion. In: Sze, S.M (eds.) VLSI Technology, McGraw-Hill Book Company, pp. 169–218 (1983)

    Google Scholar 

  74. Ueda, D., et al.: AlGaN/GaN Devices for Future Power Switching Systems. IEEE International Electron Devices Meeting, IEDM Technical Digest, pp. 377–380 (2005)

    Google Scholar 

  75. Ueda, D.: Properties and Advantages of Gallium Nitride. In Meneghini, M., Meneghesso, G., Zanoni, E. (eds.) Power GaN Devices - Materials, Applications and Reliability, Springer International Publishing, Switzerland (2017)

    Google Scholar 

  76. Ural, A., Griffin, P.B., Plummer, J.D.: Fractional contributions of microscopic diffusion mechanisms for common dopants and self-diffusion in silicon. J. Appl. Phys. 85, 6440 ff (1999)

    Google Scholar 

  77. Van de Walle, C.G., Neugebauer, J.: First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851 (2004)

    Article  Google Scholar 

  78. Vobecký, J., Hazdra, P.: High-power P-i-N diode with the local lifetimecontrol based on the proximity gettering of platinum. IEEE Electron Device Lett. 23(7), 392–394 (2002)

    Article  Google Scholar 

  79. Vobecký, J., Hazdra, P.: Radiation-enhanced diffusion of palladium for a local lifetime control in power devices. IEEE Trans. Electron Devices 54(6), 1521–1526 (2007)

    Article  Google Scholar 

  80. Vobecký, J., Záhlava, V., Hemmann, K., Arnold, M., Rahimo, M.: The radiation enhanced diffusion (RED) diode - realization of a large area p+p−n−n+ structure with high SOA. In: Proceedings of the 21st ISPSD, Barcelona, pp. 144–147 (2009)

    Google Scholar 

  81. Wondrak, W.: Erzeugung von Strahlenschäden in Silizium durch hochenergetische Elektronen und Protonen, Dissertation, Frankfurt (1985)

    Google Scholar 

  82. Wondrak, W., Boos, A.: Helium implantation for lifetime control in silicon power devices. In: Proceedings of ESSDERC 87, Bologna, pp. 649–652 (1987)

    Google Scholar 

  83. Yim, W.M., Paff, R.J.: Thermal expansion of AlN, sapphire, and silicon. J. Appl. Phys. 45(3) (1974)

    Google Scholar 

  84. Ziegler, J.F., Biersack, J.P.: The stopping and range of ions in matter. [Online]. http://www.srim.org/SRIM/SRIMINTRO.htm. Accessed 1 Mar 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Lutz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutz, J., Schlangenotto, H., Scheuermann, U., De Doncker, R. (2018). Introduction to Power Device Technology. In: Semiconductor Power Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-70917-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70917-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70916-1

  • Online ISBN: 978-3-319-70917-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics