Skip to main content

Semiconductor Properties

  • Chapter
  • First Online:
Semiconductor Power Devices

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually the occupation of excited states causes an additional degeneracy and enhancement of g [Bla62, p. 140 ff]. In Si this effect seems to be relative small owing to the high energy difference between the excited states and the ground state. Since a calculation under real conditions is not available, the effect is not taken into account.

  2. 2.

    Like-carrier scattering does not influence the mobilities directly, because the total momentum of two colliding particles and hence the current they transport are not changed by the impact. Nevertheless it reduces the mobilities by randomizing the velocity distribution of carriers, which makes scattering by ions and phonons more effective [Deb54, Luo71]. The influence of like-carrier scattering on the effectiveness of electron-hole scattering is unclear till now.

  3. 3.

    In [Jac77] a second expression for the saturation velocity of electrons has been given, it reads:

    $$ v_{sat(n)} = \frac{{2.4 \cdot 10^{7} {\text{cm}}/{\text{s}}}}{1 + 0.8 \cdot \,\exp (T/600)}. $$
  4. 4.

    For example, the ambipolar diffusion constant

    $$ D = \frac{{2D_{n} D_{p} }}{{D_{n} + D_{p} }}, $$

    relevant for the carrier distribution at high injection levels (see Sect. 5.4.1), is proposed in mentioned papers to be independent of the carrier concentration n = p. While D n decreases with increasing n, the hole diffusion constant D p rises. Obviously this disagrees with (2.45) since µn and µ p decrease with n. Also the mobility ratio µ n /µ p is obtained to be constant in cited papers in contrast to the conventional theory. This results in strongly different high current characteristics of asymmetrical pnn+ diodes.

References

  1. Abbas CC: A theoretical explanation of the carrier lifetime as a function of the injection level in gold-doped silicon. IEEE Trans. Electron devices, ED-31 pp. 1428–1432 (1984)

    Google Scholar 

  2. Atkinson CJ: “Power devices in gallium arsenide”, IEE proceedings 132, Pt.I, pp. 264–271 (1985)

    Google Scholar 

  3. Baraff, G.A.: Distribution functions and ionization rates for hot electrons in semiconductors. Phys. Rev. 128, 2507–2517 (1962)

    Article  MATH  Google Scholar 

  4. Baliga B.J., Krishna S.: Optimization of recombination levels and their capture cross section in power rectifiers and thyristors. Solid-State Electro-nics 20, 225–232 (1977)

    Google Scholar 

  5. Bartsch W., Schoerner R., Dohnke K.O.: Optimization of bipolar SiC-diodes by analysis of avalanche breakdown performance. Proceedings of the ICSCRM 2009, paper Mo-P-56 (2009)

    Google Scholar 

  6. Blakemore, J.S.: Semiconductor statistics, 1st edn. Pergamon Press, Oxford (1962)

    MATH  Google Scholar 

  7. Brotherton S.D., Bradley P.: Measurement of minority carrier capture cross sections and application to gold and platinum in silicon. J. Appl. Phys. 53, 1543–1553 (1982)

    Google Scholar 

  8. Brotherton S.D., Bradley P.: A comparison of the performance of gold and platinum killed power diodes. Solid-State Electronics 25, 119–125 (1982)

    Google Scholar 

  9. Caughey, D.M., Thomas, R.E.: Carrier mobilities in silicon empirically related to doping and field. Proceedings IEEE 23, 2192–2193 (1967)

    Article  Google Scholar 

  10. Chynoweth, A.G.: Ionization rates for electrons and holes in silicon. Phys. Rev. 109(5), 1537–1540 (1958)

    Article  Google Scholar 

  11. Conti, M., Panchieri, A.: Electrical properties of platinum in silicon. Alta Frequenza 40, 544–546 (1971)

    Google Scholar 

  12. Cornu, J., Sittig, R., Zimmermann, W.: Analysis and measurement of carrier lifetimes in the various operating modes of power devices. Solid-State Electronics 17, 1099–1106 (1974)

    Article  Google Scholar 

  13. Dannhäuser, F.: Die abhängigkeit der trägerbeweglichkeit in silizium von der konzentration der freien ladungsträger – I. Solid-State Electronics 15, 1371–1375 (1972)

    Article  Google Scholar 

  14. Debye, P.P., Conwell, E.M.: Electrical properties of n-type Germanium. Phys. Rev. 93, 693–706 (1954)

    Article  Google Scholar 

  15. Dziewior, J., Schmid, W.: Auger coefficients for highly doped and highly excited silicon. Appl. Phys. Lett. 31, 346–348 (1977)

    Article  Google Scholar 

  16. Engström, O., Grimmeis, H.G.: Thermal activation energy of the gold acceptor level in silicon. J. Appl. Phy. 46, 831–837 (1975)

    Article  Google Scholar 

  17. Evwaraye A.O., Sun E.: Electrical properties of platinum in silicon as determined by deep-level transient spectroscopy. J. Appl. Phys. 47, 3172–3176 (1976)

    Google Scholar 

  18. Fairfield, J.M., Gokhale, B.V.: Gold as a recombination centre in silicon. Solid-St. Electronics 8, 685–691 (1965)

    Article  Google Scholar 

  19. Fletcher, N.H.: The high current limit for semiconductor junction devices. Proc. IRE 45, 862–872 (1957)

    Article  Google Scholar 

  20. Friedrichs P.: SiC power devices – recent and upcoming developments IEEE ISIE 2006, July 9-12, Montreal, Quebec, Canada (2006)

    Google Scholar 

  21. Fulop, W.: Calculation of avalanche breakdown Voltages of silicon pn-junctions. Solid State Electron. 10, 39–43 (1967)

    Article  Google Scholar 

  22. Gildenblat, G.Sh., Grot, S.A., Badzian, A.: Proc. IEEE 79(5), 647–668 (1991)

    Article  Google Scholar 

  23. Goldberg, Y., Levinshtein, M.E., Rumyantsev, S.L.: In: Levinshtein et al. (eds) Properties of advanced semiconductor materials GaN, AlN, SiC, BN, SiC, SiGe. pp. 93–148. Wiley, New York (2001)

    Google Scholar 

  24. Grant, W.N.: Electron and hole ionization rates in epitaxial silicon at high electric fields. Solid-State Electronics 16, 1189–1203 (1973)

    Article  Google Scholar 

  25. Green, M.A.: Intrinsic concentration, effective densities of states, and effective mass in silicon. J. Appl. Phys. 67, 2944–2954 (1990)

    Article  Google Scholar 

  26. Hagmann, G.: Leistungselektronik. Aula-Verlag, Wiesbaden (1993)

    Google Scholar 

  27. Hall, R.N.: Electron-hole recombination in germanium. Phys. Rev. 87, 387 (1952)

    Article  Google Scholar 

  28. Hangleiter, A.: Nonradiative recombination via deep impurity levels in silicon: experiment. Phys. Rev. B 15, 9149–9161 (1987)

    Article  Google Scholar 

  29. Honea, J., Zhan Wang, Z., Wu, Y.: Design and implementation of a high-efficiency three-level inverter using GaN HEMTs. Proceedings of the PCIM Europe, pp. 486–492 (2015)

    Google Scholar 

  30. Hurkx, G.A.M., Klaassen, D.B.M., Knuvers, M.P.G.: A new recombination model for device simulation including tunneling. IEEE Trans. on electron devices 39, 331–338 (1992)

    Article  Google Scholar 

  31. Hurkx, G.A.M., de Graaff, H.C., Klosterman, W.J., Knuvers, M.P.G.: A new analytical diode model including tunneling and avalanche breakdown. IEEE Trans. on electron dev. 39, 2000–2008 (1992)

    Google Scholar 

  32. Ikeda, N., Kaya, S., Jiang, L., Sato, Y., Kato, S., Yoshida, S.: High power AlGaN/GaN HFET with a high breakdown voltage of over 1.8 kV on 4 inch Si substrates and the suppression of current collapse. Proceedings of the ISPSD ‘08 pp. 287–290 (2008)

    Google Scholar 

  33. Ishida, M., Ueda, T.: GaN‐based Gate Injection transistors for power switching applications. Japan‐EU symposium on Power Electronics December 15‐16, Tokyo (2015)

    Google Scholar 

  34. Jacobini, C., Canali, C., Ottaviani, G., Quaranta, A.: Review of some charge transport properties of silicon. Sol. State Electr. 20, 77–89 (1977)

    Article  Google Scholar 

  35. Kane, D.E., Swanson, R.M.: Modeling of electron-hole scattering in semiconductor devices. IEEE Trans. on Electron Dev. 40, 1496–1500 (1993)

    Article  Google Scholar 

  36. Klaassen, D.B.M.: A unified mobility model for device simulation—I. Model equations and concentration dependence. Solid State Electron. 35(7), 953–959 (1992)

    Article  Google Scholar 

  37. Kohn, W.: Shallow impurity states in silicon and germanium. In: Seitz, F., Turnbull, D (eds.) Solid State Physics, vol. 5, (1957)

    Google Scholar 

  38. Kokkas, A.G.: Empirical relationships between thermal conductivity and temperature for silicon and germanium. RCA Rev 35, 579–581 (1974)

    Google Scholar 

  39. Kontsevoi Y.A.: Determination of capture cross sections in the case of recombination on multicharged centers. Sov. Phys. - JETP 1177–1181 (1959)

    Google Scholar 

  40. Konstantinov, A.O., Wahab, Q., Nordell, N., Lindefelt, U.: Study of avalanche breakdown and impact ionization in 4H silicon carbide. J. Electron. Mater. 27(4), 335–341 (1998)

    Article  Google Scholar 

  41. Krause, J.: Die Abhängigkeit der Träderbeweglichkeit in Silizium von der Konzentration der freien Ladungsträger – II. Solid-St. Electron 15, 1377–1381 (1972)

    Article  Google Scholar 

  42. Kuzmicz, W.: Ionization of impurities in silicon. Solid-St. Electron 29, 1223–1227 (1986)

    Article  Google Scholar 

  43. Lang, D.V., Grimmeis, H.G., Meijer, E., Jaros, M.: Complex nature of gold-related deep levels in silicon. Phys. Rev. B 22, 3917–3934 (1980)

    Article  Google Scholar 

  44. Lanyon, H.P.D., Tuft, R.A.: Bandgap narrowing in moderately to heavily doped silicon. IEEE Trans. Electron Devices, vol. ED-26, pp. 1014–1018 (1979)

    Google Scholar 

  45. Lark-Horovitz, K.: The new electronics. In: The present State of Physics (American Assn. for the Advancement of Science), Washington, 1954

    Google Scholar 

  46. Lee, C.A., Logan, R.A., Batdorf, R.L., Kleimack, J.J., Wiegmann, W.: Ionization rates of holes and electrons in silicon. Phys. Rev. 134, A761–A773 (1964)

    Article  Google Scholar 

  47. Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S.: Properties of advanced semiconductor materials. Wiley, New York (2001)

    Google Scholar 

  48. Li, S.S.: The dopant density and temperature dependence of hole mobility and resistivity in boron doped silicon. Solid State Electron. 21, 1109–1117 (1978)

    Article  MathSciNet  Google Scholar 

  49. Lisial K.P., Milnes A.G.: Energy levels and concentrations for platinum in silicon, Soli-State Electronics 18, 533–540 (1975)

    Google Scholar 

  50. Same authors: Platinum as a lifetime-control deep impurity in silicon. J. App. Phys. 46, 5229–5235 (1975)

    Google Scholar 

  51. Loh, W.S., Ng, B., Soloviev, K., et al.: Impact ionization coefficients in 4H-SiC. IEEE Trans. Electron Devices 55, 1984–1990 (2008)

    Article  Google Scholar 

  52. Lu, L.S., Nishida, T., Sah, C.T.: Thermal emission and capture rates of holes at the gold donor level in silicon. J. Appl. Phys. 62, 4773–4780 (1987)

    Article  Google Scholar 

  53. Luong, M., Shaw, A.W.: Quantum transport theory of impurity scattering—Limited mobility in n-type Si. Phys. Rev. B 4, 2436–2441 (1971)

    Article  Google Scholar 

  54. Lu, L.S., Sah, C.T.: Electron recombination rates at the gold acceptor level in high-resistivity silicon. J. Appl. Phys. vo. 59, 173–176 (1986)

    Article  Google Scholar 

  55. Lutz J, Scheuermann U: Advantages of the new controlled axial lifetime diode. Proceedings of the 28th PCIM, pp. 163–169 (1994)

    Google Scholar 

  56. Lutz, J.: Freilaufdioden für schnell schaltende Leistungsbauelemente. Dissertation, Techn. Univ. Ilmenau 2000, ISLE Publishing House

    Google Scholar 

  57. Madelung, O.: Physics of III-V Compounds. Wiley, New York (1964)

    Google Scholar 

  58. Maes, W., De Meyer, K., Van Overstraaten, R.: Impact ionization in silicon: a review and update. Solid-St. Electron. 33, 705–718 (1990)

    Article  Google Scholar 

  59. Masetti, G., Severi, M., Solmi, S.: Modeling of carrier mobility against concentration in Arsenic-, Phosphorus-, and Boron-doped Silicon. IEEE Trans Electron Devices, ED-30(7), 764–769 (1983)

    Google Scholar 

  60. Miller M.D., Schade H., Nuese C.J.: Lifetime-controlling recombination centers in platinum-diffused silicon. J. Appl. Phys. 47, 2569–2578 (1976)

    Google Scholar 

  61. Miller, M.D.: Differences between platinum- and Gold-Doped silicon power devices. IEEE Trans. El. Dev., ED-23,12 (1976)

    Google Scholar 

  62. Mnatsakanov T.T.: Transport coefficients and Einstein relation in a high density plasma of solids. Phys. stat. sol. (b), 143 225–234 (1987)

    Google Scholar 

  63. Mnatsakanov, T.T., Rostovtsev, I.L., Philatov, N.I.: Investigation of the effect of nonlinear physical phenomena on charge carrier transport in semiconductor devices. Solid-St. Electronics 10, 579–585 (1987)

    Article  Google Scholar 

  64. Mnatsakanov, T.T., Schröder, D., Schlögl, A.: Effect of high injection level phenomena on the feasibility of diffusive approximation in semiconductor device modeling. Solid-St. Electronics 42, 153–163 (1998)

    Article  Google Scholar 

  65. Mönch, W.: On the physics of avalanche breakdown in semiconductors. Phys. Stat. Sol. 36, 9–48 (1969)

    Article  Google Scholar 

  66. Moll, J.L.: Physics of semiconductors. McGraw Hill, New York (1964)

    MATH  Google Scholar 

  67. Monemar, B: Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B. 10(2), (1974)

    Google Scholar 

  68. Morita, T, Tanaka, K, Ujita, S, Ishida, M, Uemoto, Y, Ueda, T.: Recent Progress in Gate Injection Technology based GaN Power Devices. Proceedings of the ISPS, Prague, pp. 34–37, (2014)

    Google Scholar 

  69. von Münch, W.: Einführung in die Halbleitertechnologie. B.G. Teubner, Stuttgart (1993)

    Book  Google Scholar 

  70. Ng, B.K., David, J.P.R., Tozer, R.C., et al.: Non-local effects in thin 4H-SiC UV avalanche photodiodes. IEEE Trans. Electron Devices 50, 1724–1732 (2003)

    Article  Google Scholar 

  71. Niwa, F., Misumi, T., Yamazaki, S., Sugiyama, T., Kanata, T., Nishiwaki, K.: A study of correlation between CiOi defects and dynamic avalanche phenomenon of PiN diode using he ion irradiation. Proceedings of the PESC, Rhodos (2008)

    Google Scholar 

  72. Ogawa, T.: Avalanche breakdown and multiplication in silicon pin junctions. Jpn. J. Appl. Phys. 4, 473 ff (1965)

    Google Scholar 

  73. Okano, K., Kiyota, H., Iwasaki, T., Kurosu, T., Ida, M., Nakamura, T.: Proc. Second Int. Conf. on the New Diamond Science and Technology, Washington D.C., pp. 917–922 (1990)

    Google Scholar 

  74. Van Overstraeten, R., De Man, H.: Measurement of the Ionization Rates in Diffused Silicon p-n junctions. Solid State Electron. 13, 583–608 (1970)

    Article  Google Scholar 

  75. Pals J.A.: Properties of Au, Pt, Pd, and Rh levels in silicon measured with a constant capacitance technique. Solid-St. Electronics 17, 1139–1145 (1974)

    Google Scholar 

  76. Poganski, S.: Fortschritte auf dem Gebiet der Selen-Gleichrichter. AEG-Mitteilungen 54, 157–161 (1964)

    Google Scholar 

  77. Quay, R.: Gallium Nitride Electronics. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  78. Rashid, S.J., Udrea, F., Twitchen, D.J., Balmer, R.S., Amaratunga, G.A.J.: Single crystal diamond schottky diodes – practical design considerations for enhanced device performance. Proceedings of the ISPS, Prague (2008)

    Google Scholar 

  79. Sah C.T., Shockley W.: Electro-hole recombination statistics in semiconductors through flaws with many charge conditions. Phys. Rev. 109, 1103–1115 (1958)

    Google Scholar 

  80. Sah, C.T., Forbes, L., Rosier, L.I., Tasch Jr., A.F., Tole, A.B.: Thermal emission rates of carriers at gold centers in silicon. Appl. Phys. Lett. 15, 145–148 (1969)

    Article  Google Scholar 

  81. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon Read Diode oscillator. IEEE Trans. Electron Dev. ED-16, pp. 64–77 (1969)

    Google Scholar 

  82. Schmid, W., Reiner, J.: Minority carrier lifetime in gold-diffused silicon at high carrier concentrations. J. Appl. Phys. 53, 6250–6252 (1982)

    Article  Google Scholar 

  83. Schlangenotto, H., Maeder, H., Gerlach, W.: Temperature dependence of the radiative recombination coefficient in silicon. Phys. Stat. Sol. (a) 21, 357–367 (1974)

    Article  Google Scholar 

  84. Schlangenotto, H., Maeder, H., Dziewior. J.: Neue Technologien für Silizium-Leistungsbauelemente—Rekombination in hoch dotierten Emitterzonen. Research Report T 76–54, German Ministry of Research and Technology (1976)

    Google Scholar 

  85. Schlangenotto H: Script of lectures on Semiconductor power devices, Technical University Darmstadt, 1991 (in German)

    Google Scholar 

  86. Schäfer, W.J., Negley, G.H., Irvin, K.G., Palmour, J.W.: Conductivity anisotropy in epitaxial 6H and 4H SiC. In: Proceedings of Material Res. Society Symposium, Bd. 339, 595–600 (1994)

    Google Scholar 

  87. Schultz, W.: Rekombinations- und Generationsprozesse in Halbleitern. Festkörperprobleme Band V, pp. 165–219, Vieweg & Sons, Braunschweig, (1966)

    Google Scholar 

  88. Selberherr, S.: Analysis and simulation of semiconductor devices. Springer Vienna, (1984)

    Google Scholar 

  89. Shields, J.: Breakdown in Silicon pn-Junctions. Journ. Electron. Control, no. 6 pp. 132 ff (1959)

    Google Scholar 

  90. Shockley, W., Read Jr., W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  MATH  Google Scholar 

  91. Shockley, W.: Electrons and Holes in Semiconductors, Seventh printing. D. van Nostrand Company Inc, Princeton (1959)

    Google Scholar 

  92. Shockley, W.: Problems related to p-n junctions in silicon. Solid-St. Electronics 2, 35–67 (1961)

    Article  Google Scholar 

  93. Siemieniec, R., Netzel, M., Südkamp, W., Lutz, J.: Temperature dependent properties of different lifetime killing technologies on example of fast diodes. IETA2001, Cairo, (2001)

    Google Scholar 

  94. Siemieniec, R., Südkamp, W., Lutz, J.: Determination of parameters of radiation induced traps in silicon. Solid-State Electr. 46, 891–901 (2002)

    Article  Google Scholar 

  95. Siemieniec, R., Niedernostheide, F.J., Schulze, H.J., Südkamp, W., Kellner-Werdehausen, U., Lutz, J.: Irradiation-induced deep levels in silicon for power device tailoring. J. Electrochem. Soc. 153(2), G108–G118 (2006)

    Article  Google Scholar 

  96. Singh, R., Baliga, B.J.: Analysis and optimization of power MOSFETs for cryogenic operation. Sol. State Electronics 36, 1203–1211 (1993)

    Article  Google Scholar 

  97. Slotboom, J.W., De Graaff, H.C.: Measurements of bandgap narrowing in Si bipolar transistors. Solid-State Electronics 19, 857–862 (1976)

    Article  Google Scholar 

  98. Slotbomm, J.W.: The pn-product in Silicon. Solid State Electron. 20, 279–283 (1977)

    Article  Google Scholar 

  99. Smith, R.A.: Semiconductors. University Press, Cambridge (1959)

    MATH  Google Scholar 

  100. Spenke, E.: Electronic semiconductors, 1st edn. McGraw Hill, New York (1958)

    Google Scholar 

  101. Südkamp, W.: DLTS-Untersuchung an tiefen Störstellen zur Einstellung der Trägerlebensdauer in Si-Leistungsbauelementen, Dissertation, Technical University of Berlin, (1994)

    Google Scholar 

  102. Advanced tcad manual, Synopsys Inc. Mountain View, CA. Available: http://www.synopsys.com (2007)

  103. Sze, S.M.: Physics of semiconductor devices. Wiley, New York (1981)

    Google Scholar 

  104. Sze, S.M.: Semiconductor devices, physics and technology, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  105. Tach Jr., A.F., Sah, C.T.: Recombination-Generation and optical properties of gold acceptor in silicon. Phys. Rev. B 1, 800–809 (1970)

    Article  Google Scholar 

  106. Thornber, K.K.: Relation of drift velocity to low-field mobility and high-field saturation velocity. J. Appl. Phys. 51 (1980)

    Google Scholar 

  107. Thurmond, C.D.: The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP. J. Electrochem. Soc., Solid State Science and Technology, 122(8) (1975)

    Google Scholar 

  108. Thurber, W.R., Mattis, R.L., Liu, Y.M., Filliben, J.J.: Resistivity-dopant density relationship for phosporous-doped silicon. J. Electrochem. Soc. 127, 1807–1812 (1980)

    Article  Google Scholar 

  109. Thurber, W.R., Mattis, R.L., Liu, Y.M., Filliben, J.J.: Resistivity-dopant density relationship for boron-doped silicon. J. Electrochem. Soc. 127, 2291–2294 (1980)

    Article  Google Scholar 

  110. Twitchen, D.J., Whitehead, A.J., Coe, S.E., Isberg, J., Hammersberg, J., Wikström, T., Johansson, E.: High-voltage single-crystal diamond diodes. IEEE Trans. on Electron Dev. 51, 826–828 (2004)

    Article  Google Scholar 

  111. Ueda, D., Murata, T., Hikita, M., Nakazawa, S., Kuroda, M., Ishida, H., Yanagihara, M., Inoue, K., Ueda, T., Uemoto, Y., Tanaka, T., Egawa, T.: AlGaN/GaN devices for future power switching systems. IEEE International Electron Devices Meeting, pp. 377–380 (2005)

    Google Scholar 

  112. Valdinoci, M., Ventura, D., Vecchi, M., Rudan, M., Baccarani, G., Illien, F., Stricker, A., Zullino, L.: Impact-Ionization in silicon at large operating temperature. Proc. SISPAD’99, pp. 27–30, Kyoto, (1999)

    Google Scholar 

  113. Varshni, Y.P.: Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967)

    Article  Google Scholar 

  114. Van Vechten, J.A., Thurmond, C.D.: Entropy of ionization and temperature variation of ionization levels of defects in semiconductors. Phys. Review B 14, 3539–3550 (1976)

    Article  Google Scholar 

  115. Wolfstirn, K.B.: Hole and electron mobilities in doped silicon from radiochemical and conductivity measurements. J. Phys. Chem. Solids 16, 279–284 (1960)

    Article  Google Scholar 

  116. Wolff, P.A.: Theory of electron multiplication in silicon and germanium. Phys. Rev. 95, 1415–1420 (1954)

    Article  Google Scholar 

  117. Wu, R.H., Peaker, A.R.: Capture cross sections of the gold and acceptor states in n-type Czochralski silicon. Solid-St. Electronics 25, 643–649 (1982)

    Article  Google Scholar 

  118. Wul, B.M., Shotov, A.P.: Multiplication of electrons and holes in p-n junctions. Solid State Phys. in Electron. Telecommun. 1, 491–497 (1960)

    Google Scholar 

  119. Zimmermann, W.: Experimental verification of the Shockley-Read-Hall recombination theory in silicon. Electron. Lett. 9, 378–379 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Lutz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutz, J., Schlangenotto, H., Scheuermann, U., De Doncker, R. (2018). Semiconductor Properties. In: Semiconductor Power Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-70917-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70917-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70916-1

  • Online ISBN: 978-3-319-70917-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics