Skip to main content

IGBTs

  • Chapter
  • First Online:
  • 5251 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Equation (10.9) is usually derived for low injection. The considerations, however, will also be valid for high injection, qualitatively.

References

  1. Araki, T.: Integration of power devices – next tasks. In: Proceedings of the EPE, Dresden (2005)

    Google Scholar 

  2. Baliga, B.J., Adler, M.S., Grey, P.V., Love, R.P.: The insulated gate rectifier (IGR): a new power switching device. In Proceedings of the IEDM, pp. 264–267 (1982)

    Google Scholar 

  3. Baliga, B.J.: Fast-switching insulated gate transistors. IEEE Electron Device Lett. 4(12), 452–454 (1983)

    Article  Google Scholar 

  4. Becke, H.W., Wheatley, Jr C.F.: Power MOSFET with an anode region. United States Patent Nr. 4,364,073, 14 Dec 1982 (filed 25 Mar 1980)

    Google Scholar 

  5. Dugal, F., Baschnagel, A., Rahimo, M., Kopta, A.: The next generation 4500 V/3000A BIGT Stakpak modules. In: Proceedings PCIM Europe 2017, pp. 765–769 (2017)

    Google Scholar 

  6. Griebl, E., Hellmund, O., Herfurth, M., Hüsken, H., Pürschel, M.: LightMOS – IGBT with integrated diode for lamp ballast applications. In: PCIM 2003, p. 79ff (2003)

    Google Scholar 

  7. Iwamuro, N., Laska, T.: IGBT history, state-of-the-art, and future prospects. IEEE Trans. El. Dev. 64(3), 741–752 (2017)

    Article  Google Scholar 

  8. Kitagawa, M., Omura, I., Hasegawa, S., Inoue, T., Nakagawa, A.: A 4500 V injection enhanced insulated gate bipolar transistor (IEGT) in a mode similar to a thyristor. In: IEEE IEDM Technical Digest, pp. 697–682 (1993)

    Google Scholar 

  9. Laska, T., Miller, G., Niedermeyr, J.: A 2000 V non-punchtrough IGBT with high ruggedness. Solid State Electron. 35(5), 681–685 (1992)

    Article  Google Scholar 

  10. Laska, T., Lorenz, L., Mauder, A.: The field stop IGBT concept with an optimized diode. In: Proceedings of the 41th PCIM, Nürnberg (2000)

    Google Scholar 

  11. Laska, T., Münzer, M., Pfirsch, F., Schaeffer, C., Schmidt, T.: The Field Stop IGBT (FS IGBT) – a new power device concept with a great improvement potential. In: Proceedings of the ISPSD, Toulouse (2000)

    Google Scholar 

  12. Laska, T., et al.: Short circuit properties of trench/field stop IGBTs design aspects for a superior robustness. In: Proceeding 15th ISPSD, pp. 152–155, Cambridge (2003)

    Google Scholar 

  13. Linder, S.: Power semiconductors. EPFL Press, Lausanne, Switzerland (2006)

    Google Scholar 

  14. Miller, G., Sack, J.: A new concept for a non punch through IGBT with MOSFET like switching characteristics. In: Proceedings of the PESC’ 89, vol. 1, pp. 21–25 (1989)

    Google Scholar 

  15. Mori, M., et al.: A planar-gate high-conductivity IGBT (HiGT) with hole-barrier layer. IEEE Trans. El. Dev. 54(6), 1515 (2007)

    Article  Google Scholar 

  16. Naito, T., Takei, M., Nemoto, M., Hayashi, T., Ueno, K.: 1200 V reverse blocking IGBT with low loss for matrix converter. In: Proceedings of the ISPSD ‘04, pp. 125–128 (2004)

    Google Scholar 

  17. Nakagawa, A., Ohashi, H., Kurata, M., Yamaguchi, H., Watanabe, K.: Non-latch-up 1200 V 75A bipolar-mode MOSFET with large ASO. In: Proceeding IEEE International Electron Devices Meeting, Dec 1984, pp. 860–861

    Google Scholar 

  18. Nakawaga, A., Ohashi, H.: 600–1200 V bipolar mode MOSFETS with high-current capability. IEEE-EDL 6(7), 378–380 (1985)

    Article  Google Scholar 

  19. Nakagawa, A.: Theoretical investigation of silicon limit characteristics of IGBT. In: Proceedings of the ISPSD, Neapel (2006)

    Google Scholar 

  20. Netzel, M.: Analyse, Entwurf und Optimierung von diskreten vertikalen IGBT-Strukturen, Dissertation. Isle-Verlag, Ilmenau (1999)

    Google Scholar 

  21. Nicolai, U., Reimann, T., Petzoldt, J., Lutz, J.: Application Manual Power modules, ISLE Verlag (2000)

    Google Scholar 

  22. Ogura, T., Ninomiya, H., Sugiyama, K., Inoue, T.: 4.5 kV injection enhanced gate transistors (IEGTs) with high turn-off ruggedness. IEEE Trans. Electron Devices 51, 636–641 (2004)

    Article  Google Scholar 

  23. Omura, I., Ogura, T., Sugiyama, K., Ohashi, H: Carrier injection enhancement effect of high voltage MOS-devices – device physics and design concept. In: Proceedings of the ISPSD, Weimar (1997)

    Google Scholar 

  24. Osawa, A., Higuchi, K., Kiamura, A., Inoue, D., Takamiya, Y., Yoshida, S., Gohara, H., Otsuki, M.: The highest power density IGBT module in the world for xEV power train. Proc. PCIM Europe 2017, 1761–1766 (2017)

    Google Scholar 

  25. Plumer, J.D., Scharf, B.W.: Insulated-gate planar thyristors: I-Structure and basic operation. IEEE Trans. Electron Devices 27(2), 380–387 (1980)

    Article  Google Scholar 

  26. Rahimo, M., Kopta, A., Eicher, S., Kaminski, N., Bauer, F., Schlapbach, U., Linder, S.: Extending the boundary limits of high voltage IGBTs and diodes to above 8 kV. In: Proceeding ISPSD 2002, Santa Fe, USA, pp. 41–44

    Google Scholar 

  27. Rahimo, M., Kopta, A., Linder, S.: Novel enhanced–planar IGBT technology rated up to 6.5 kv for lower losses and higher SOA capability. In: Proceeeding ISPSD 2006, Naples, pp. 33–36 (2006)

    Google Scholar 

  28. Rahimo, M., Schlapbach, U., Kopta, A., Vobecky, J., Schneider, D., Baschnagel, A.: A high current 3300 v module employing reverse conducting IGBTs setting a new benchmark in output power capability. In: Proceeding ISPSD, Orlando, FL (2008)

    Google Scholar 

  29. Rahimo, M., Kopta, A., Schlapbach, U., Vobecky, J., Schnell, R., Klaka, S.: The Bi-mode insulated gate transistor (BiGT) A potential technology for higher power applications. In: Proceeding ISPSD09, p. 283 (2009)

    Google Scholar 

  30. Rogne, T., Ringheim, N.A., Odegard, B., Eskedal, J., Undeland, T.M.: Short-circuit capability of IGBT (COMFET) transistors. IEEE Ind. Appl. Soc. Annu. Meet. 1, 615–619 (1988)

    Google Scholar 

  31. Russell, J.P., Goodman, A.M., Goodman, L.A., Neilson, J.M.: The COMFET – a new high conductance MOS-gated device. IEEE Electron Device Lett. 4(3), 63–65 (1983)

    Article  Google Scholar 

  32. Rüthing, H., Hille, F., Niedernostheide, F.J., Schulze, H.J., Brunner, B.: 600 V reverse conducting (RC-) IGBT for drives applications in ultra-thin wafer technology. In: 19th International Symposium on Power Semiconductor Devices and IC’s, ISPSD ‘07, pp. 89–92 (2007)

    Google Scholar 

  33. Sakane, H., Sumitomo, M., Arakawa, K., Higuchi, Y., Asai, J.: Injection Control Technique for High Speed Switching with a double gate PNM-IGBT. In: The Papers of Joint Technical Meeting on Electron Devices and Semiconductor Power Converter, IEE Japan, Paper No. EDD-13-046 SPC-13-108 (2013)

    Google Scholar 

  34. Scharf, B.W., Plummer, J.D.: A MOS-controlled triac device. In: Proceeding IEEE International Solid-State Circuits Conference, pp. 222–223 (1978)

    Google Scholar 

  35. Shenai, K.: The invention and demonstration of the IGBT. IEEE Power Electron. Mag. June 2015

    Google Scholar 

  36. Storasta, L., et al.: The radial layout design concept for the bi-mode insulated gate transistor. In: ISPSD, San Diego, USA (2011)

    Google Scholar 

  37. Storasta, L., Rahimo, M., Häfner, J., Dugal, F., Tsyplakov, E., Callavik, M.: Optimized power semiconductors for the power electronics based HVDC breaker application. In: Proceedings PCIM 2015, Nuremberg (2015)

    Google Scholar 

  38. Sumitomo, M., et al.: Low loss IGBT with partially narrow mesa structure (PNM-IGBT). In: Proceedings ISPSD (2012)

    Google Scholar 

  39. Sumitomo, M., et al.: Injection control technique for high speed switching with a double gate PNM-IGBT. In: Proceedings ISPSD, Brügge (2013)

    Google Scholar 

  40. Takahashi, M., Yoshida, S., Tamenori, A., Kobayashi, Y., Ikawa, O.: Extended power rating of 1200 V IGBT module with 7G-RC-IGBT chip technologies. In: Proceedings PCIM Europe 2017, pp. 438–444 (2016)

    Google Scholar 

  41. Takahashi, H., Haruguchi, H., Hagino, H., Yamada, T.: Carrier stored trench-gate bipolar transistor (CSTBT) – a novel power device for high voltage application. In: ISPSD ‘96 Proceedings 8th International Symposium on Power Semiconductor Devices and ICs 20–23 May 1996, pp. 349–352, 1133 (1996)

    Google Scholar 

  42. Takahashi, H., Kaneda, M., Minato, T.: 1200 V class reverse blocking IGBT (RB-IGBT) for AC matrix converter. In: Proceedings of the 16th ISPSD, pp. 121–124 (2004)

    Google Scholar 

  43. Takahashi, H., Yamamoto, A., Aono, S., Minato, T.: 1200 V reverse conducting IGBT. In: Proceedings of the 16th ISPSD, pp. 133–36 (2004)

    Google Scholar 

  44. Takeda, T., Kuwahara, M., Kamata, S., Tsunoda, T., Imamura, K., Nakao, S.: 1200 V trench gate NPT-IGBT (IEGT) with excellent low on-state voltage. In: Proceedings of the ISPSD, Kyoto (1998)

    Google Scholar 

  45. Tihanyi, J.: “MOS-Leistungsschalter”, ETG-Fachtagung Bad Nauheim, 4.-5. Mai 1988, Fachbericht Nr. 23, VDE-Verlag, S. 71–78 (1988)

    Google Scholar 

  46. Werber, D., Pfirsch, F., Gutt, T., Komarnitskyy, V., Schaeffer, C., Hunger, T., Domes, D.: 6.5 kV RCDC for increased power density in IGBT-modules. In: Proceedings of the 26th ISPSD, Waikoloa, pp. 35–38 (2014)

    Google Scholar 

  47. Werber, D.: A 1000A 6.5 kV power module enabled by reverse-conducting trench-IGBT-technology. In: Proceedings PCIM 2015, Nuremberg (2015)

    Google Scholar 

  48. Yamada, J., Yu, Y., Donlon, J.F., Motto, E.R.: New MEGA POWER DUAL™ IGBT module with advanced 1200 V CSTBT chip. In: Record of the 37th IAS Annual Meeting Conference, vol. 3, pp. 2159–2164 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Lutz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutz, J., Schlangenotto, H., Scheuermann, U., De Doncker, R. (2018). IGBTs. In: Semiconductor Power Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-70917-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70917-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70916-1

  • Online ISBN: 978-3-319-70917-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics