Skip to main content

Classified Material

  • Chapter
  • First Online:
Introduction to Random Matrices

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 26))

Abstract

In this Chapter, we continue setting up the formalism and provide a simple classification of matrix models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As we know, the Dirac delta function (or rather distribution) \(\delta (x)\) is basically an extremely peaked function at the point \(x=0\), like the limit of a Gaussian pdf as its variance goes to zero, \(\delta (x)=\lim _{\varepsilon \rightarrow 0^+} \frac{1}{2\sqrt{\pi \varepsilon }}e^{-x^2/(4\varepsilon )}\).

  2. 2.

    Compute

    $$\begin{aligned} N\int _a^b n(x)dx= \sum _{i=1}^N\int _a^b \delta (x-x_i)dx=\sum _{i=1}^N \chi _{[a,b]}(x_i)\ , \end{aligned}$$
    (3.5)

    where the indicator function \(\chi _{[a,b]}(z)\) is equal to 1 if \(z\in (a,b)\) and 0 otherwise. This is by definition the number of eigenvalues between a and b, as it should.

  3. 3.

    We use again the shorthand \(d\varvec{x}=\prod _{j=1}^N dx_j\).

  4. 4.

    U is orthogonal/unitary/symplectic if H is real symmetric/complex hermitian/quaternion self-dual, respectively. You surely have noticed that this is precisely the origin of the names given to the ensembles: Orthogonal, Unitary and Symplectic.

  5. 5.

    In its three incarnations: GOE, GUE and GSE.

References

  1. R. Kühn, J. Phys. A: Math. Theor. 41, 295002 (2008)

    Article  Google Scholar 

  2. P. Cizeau, J.P. Bouchaud, Phys. Rev. E 50, 1810 (1994)

    Article  ADS  Google Scholar 

  3. A.D. Mirlin, Y.V. Fyodorov, F.-M. Dittes, J. Quezada, T.H. Seligman, Phys. Rev. E 54, 3221 (1996)

    Article  ADS  Google Scholar 

  4. H. Weyl, Classical Groups (Princeton Univ. Press, Princeton, 1946)

    MATH  Google Scholar 

  5. K.A. Muttalib, Y. Chen, M.E.H. Ismail, V.N. Nicopoulos, Phys. Rev. Lett. 71, 471 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. C.E. Porter and N. Rosenzweig, Annals of the Acad. Sci. Fennicae, Serie A VI Physica 44, 1 (1960), reprinted in C.E. Porter, Statistical Theories of Spectra: Fluctuations (Academic Press, New York, 1965)

    Google Scholar 

  7. A. Borodin, Nuclear Physics B 536, 704 (1998)

    Article  ADS  Google Scholar 

  8. P. Desrosiers, P.J. Forrester, J. Approx. Theory 152, 167 (2008)

    Article  MathSciNet  Google Scholar 

  9. J.T. Albrecht, C.P. Chan, A. Edelman, Found. Comput. Math. 9, 461 (2008)

    Article  Google Scholar 

  10. Y.V. Fyodorov, Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond (2004), https://arxiv.org/pdf/math-ph/0412017.pdf

  11. M. Zirnbauer, Symmetry classes in random matrix theory (2004), https://arxiv.org/pdf/math-ph/0404058.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo Vivo .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Livan, G., Novaes, M., Vivo, P. (2018). Classified Material. In: Introduction to Random Matrices. SpringerBriefs in Mathematical Physics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-70885-0_3

Download citation

Publish with us

Policies and ethics