Skip to main content

Abstract

Geographic decision support systems aim to integrate and process data originating from different sources and different data providers in order to create suitability models. A suitability model denotes how suitable geographic locations are for a specific purpose on which decision-makers need to make a decision. Particularly in the presence of volunteered information, data quality assessment becomes an important aspect of a decision-making process. Geographic data are commonly prone to incompleteness, imprecision and uncertainty, and this is even more the case with volunteered data. To correctly inform the users, it is essential to communicate not only the suitability degrees highlighted in a suitability model, but also the confidence about these suitability degrees as can be derived from data quality assessment. In this chapter, a novel hierarchical approach for data quality assessment, supporting the computation of associated confidence degrees, is introduced. To illustrate its added value, aspects of the project Transnational and Integrated Long-term marine Exploitation Strategies (TILES) are used. Providing confidence information adds an extra dimension to the decision-making process and leads to more sound decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belton, V., & Stewart, T. J. (2002). Multiple Criteria Decision Analysis. Dordrecht, The Netherlands: Kluwer Academic Publ.

    Book  MATH  Google Scholar 

  2. Zeleny, M. (1982). Multiple Criteria Decision Making. New York, USA: McGraw Hill.

    MATH  Google Scholar 

  3. Jankowski, P., & Richard, L. (1994). Integration of GIS-based suitability analysis and multicriteria evaluation in a spatial decision support system for route selection. Environment and Planning B, 21(3), 326–339.

    Article  Google Scholar 

  4. Rinner, C., & Raubal, M. (2004). Personalized Multi-Criteria Decision Strategies in Location-Based Decision Support. Journal of Geographic Information Sciences, 10(2), 149–156.

    Google Scholar 

  5. Kangas, A., Kangas, J., & Pykäkäinen, J. (2001). Outranking Methods as Tools in Strategic Natural Resources Planning. Silva Fennica, 35(2), 215–227.

    Article  Google Scholar 

  6. Keeney, R. L. (1996). Value-focused thinking: identifying decision opportunities and creating alternatives. European Journal of Operational Research, 92, 537–549.

    Article  MATH  Google Scholar 

  7. Janssen, R., & Rietveld, P. (1990). Multicriteria analysis and geographical information systems: an application to agricultural land use in the Netherlands. In H. J. Scholten & J. C. H. Stillwell (Eds.), Geographical information systems for urban and regional planning (pp. 129–139). Dordrecht, The Netherlands: Kluwer Academic Publ.

    Chapter  Google Scholar 

  8. Banai, R. (1993). Fuzziness in geographic information systems: contributions from the analytic hierarchy process. International Journal of Geographical Information Systems, 7(4), 315–329.

    Article  Google Scholar 

  9. Dujmović, J. J., De Tré, G., & Van de Weghe, N. (2010). LSP suitability maps. Soft Computing, 14, 421–434.

    Article  Google Scholar 

  10. Triantaphyllou, E. (2000). Multi-Criteria Decision Making Methods: A Comparative Study. Dordrecht, The Netherlands: Kluwer Academic Publ.

    Book  MATH  Google Scholar 

  11. Dujmović, J. J., & De Tré, G. (2011). Multicriteria Methods and Logic Aggregation in Suitability Maps. International Journal of Intelligent Systems, 26(10), 971–1001.

    Article  Google Scholar 

  12. Van Lancker, V., Francken, F., Kint, L., Terseleer, N., Van den Eynde, D., De Mol, L., et al. (2017). Building a 4D Voxel-Based Decision Support System for a Sustainable Management of Marine Geological Resources. In P. Diviacco, A. Leadbetter, & H. Glaves (Eds.), Oceanographic and Marine Cross-Domain Data Management for Sustainable Development (pp. 224–252). Hershey, USA: IGI Global.

    Chapter  Google Scholar 

  13. Kint, L., & Van Lancker, V. (2016). SediLITHO@SEA v2 (06/10/2016). Database lithological descriptions, with relevance to Belgian part of the North Sea. Brussels: Royal Belgian Institute of Natural Sciences (internal report).

    Google Scholar 

  14. Van Lancker, V. (2009) SediCURVE@SEA: a multiparameter sediment database, in support of environmental assessments at sea. In: Van Lancker V. et al. (eds.) Quantification of Erosion/Sedimentation patterns to Trace the natural versus anthropogenic sediment dynamics (QUEST4D). Final Report Phase 1. Science for Sustainable Development. Brussels: Belgian Science Policy 2009, 63p + Annexes.

    Google Scholar 

  15. van Heteren, S., & Van Lancker, V. (2015). Collaborative seabed-habitat mapping: uncertainty in sediment data as an obstacle in harmonization. In P. Diviacco, P. Fox, A. Leadbetter, & C. Pshenichny (Eds.), Collaborative Knowledge in Scientific Research Networks (pp. 154–176). Hershey, USA: IGI Global.

    Chapter  Google Scholar 

  16. Dujmović, J. J. (2007). Preference Logic for System Evaluation. IEEE Transactions on Fuzzy Systems, 15(6), 1082–1099.

    Article  Google Scholar 

  17. Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  18. Dujmović, J. J., & Larsen, H. L. (2007). Generalized Conjunction/Disjunction. International Journal of Approximate Reasoning, 46(3), 423–446.

    Article  MathSciNet  MATH  Google Scholar 

  19. De Mol, R., Tapia-Rosero, A., & De Tré G. (2015) An Approach for Uncertainty Aggregation using Generalised Conjunction/Disjunction Aggregators. In: Proc. of the IFSA/EUSFLAT 2015 conference, pp. 1499-1506, Gijón, Spain.

    Google Scholar 

  20. Chilès, J.-P., & Delfiner, P. (2012). Geostatistics – Modeling Spatial Uncertainty. New Jersey, USA: Wiley & Sons.

    Book  MATH  Google Scholar 

  21. Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. New York, USA: Oxford University Press.

    Google Scholar 

  22. Stafleu, J., Maljers, D., Gunnink, J. L., Menkovic, A., & Busschers, F. S. (2011). 3D modelling of the shallow subsurface of Zeeland, the Netherlands. Netherlands Journal of Geosciences, 90(4), 293–310.

    Article  Google Scholar 

  23. Soares, A. (1992). Geostatistical estimation of multi-phase structure. Mathematical Geology, 24, 149–160.

    Article  Google Scholar 

  24. Wellmann, J. F., & Regenauer-Lieb, K. (2012). Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models. Tectonophysics, 526–529, 207–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy De Tré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Tré, G. et al. (2018). Data Quality Assessment in Volunteered Geographic Decision Support. In: Bordogna, G., Carrara, P. (eds) Mobile Information Systems Leveraging Volunteered Geographic Information for Earth Observation. Earth Systems Data and Models, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-70878-2_9

Download citation

Publish with us

Policies and ethics