Skip to main content

On Nonstationary Iterated Tikhonov Methods for Ill-Posed Equations in Banach Spaces

  • Chapter
  • First Online:
New Trends in Parameter Identification for Mathematical Models

Part of the book series: Trends in Mathematics ((TM))

Abstract

In this article we propose a novel nonstationary iterated Tikhonov (nIT) type method for obtaining stable approximate solutions to ill-posed operator equations modeled by linear operators acting between Banach spaces. We propose a novel a posteriori strategy for choosing the sequence of regularization parameters (or, equivalently, the Lagrange multipliers) for the nIT iteration, aiming to obtain a fast decay of the residual.

Numerical experiments are presented for a 1D convolution problem (smooth Tikhonov functional and Banach parameter-space), and for a 2D deblurring problem (nonsmooth Tikhonov functional and Hilbert parameter-space).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Normally, the differentiability and convexity properties of this functional are independent of the particular choice of p > 1.

  2. 2.

    Here (2) is replaced by Ag = y δ.

  3. 3.

    For simplicity, all legends in this figure refers to the space L 1; however, we used p = 1.001 in the computations.

  4. 4.

    For the purpose of comparison, the iteration error is plotted in the in L 2-norm for both choices of the parameter space X = L 2 and X = L 1.001.

  5. 5.

    In this situation we have smooth penalization terms and Banach parameter-spaces.

  6. 6.

    In this situation we have nonsmooth penalization terms and Hilbert parameter-spaces.

References

  1. R. Boiger, A. Leitão, B.F. Svaiter, Endogenous strategies for choosing the Lagrange multipliers in nonstationary iterated Tikhonov method for ill-posed problems (2016, submitted)

    Google Scholar 

  2. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext (Springer, New York, 2011)

    MATH  Google Scholar 

  3. I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Mathematics and Its Applications, vol. 62 (Kluwer Academic, Dordrecht, 1990)

    Google Scholar 

  4. A. De Cezaro, J. Baumeister, A. Leitão, Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations. Inverse Prob. Imaging 5(1), 1–17 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. Ser. A 55(3), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. H.W. Engl, M Hanke, A Neubauer, Regularization of Inverse Problems. Mathematics and Its Applications, vol. 375 (Kluwer Academic, Dordrecht, 1996)

    Google Scholar 

  7. D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  8. R. Glowinski, A. Marrocco, Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9(R-2), 41–76 (1975)

    Google Scholar 

  9. M. Hanke, C.W. Groetsch, Nonstationary iterated Tikhonov regularization. J. Optim. Theory Appl. 98(1), 37–53 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Q. Jin, L. Stals, Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces. Inv. Probl. 28(3), 104011 (2012)

    Google Scholar 

  11. Q. Jin, M. Zhong, Nonstationary iterated Tikhonov regularization in Banach spaces with uniformly convex penalty terms. Numer. Math. 127(3), 485–513 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. R.T. Rockafellar, Conjugate Duality and Optimization (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1974). Lectures given at the Johns Hopkins University, Baltimore, MD, June, 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, vol. 16

    Google Scholar 

  13. T. Schuster, B. Kaltenbacher, B. Hofmann, K.S. Kazimierski, Regularization Methods in Banach Spaces (de Gruyter, Berlin, 2012)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

F. Margotti is supported by CAPES and IMPA. A. Leitão acknowledges support from CNPq (grant 309767/2013-0), and from the AvH Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Leitão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Machado, M.P., Margotti, F., Leitão, A. (2018). On Nonstationary Iterated Tikhonov Methods for Ill-Posed Equations in Banach Spaces. In: Hofmann, B., Leitão, A., Zubelli, J. (eds) New Trends in Parameter Identification for Mathematical Models. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-70824-9_10

Download citation

Publish with us

Policies and ethics