Advertisement

Remote Sensing of Crystal Shapes in Ice Clouds

  • Bastiaan van DiedenhovenEmail author
Chapter
Part of the Springer Series in Light Scattering book series (SSLS)

Abstract

Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally inconsistent with the data and thus crystal impurity, distortion or surface roughness is prevalent. However, conclusions about the dominating ice shapes are often inconclusive and contradictory and are highly dependent on the limited selection of shapes included in the investigations. Since ice crystal optical properties are mostly determined by the aspect ratios of the crystal components and their microscale structure, it is advised that remote sensing applications focus on the variation of these ice shape characteristics, rather than on the macroscale shape or habit. Recent studies use databases with nearly continuous ranges of crystal component aspect ratio and/or roughness levels to infer the variation of ice crystal shape from satellite and airborne remote sensing measurements. Here, the rationale and results of varying strategies for the remote sensing of ice crystal shape are reviewed. Observed systematic variations of ice crystal geometry with location, cloud height and atmospheric state suggested by the data are discussed. Finally, a prospective is given on the future of the remote sensing of ice cloud particle shapes.

Notes

Acknowledgements

Bastiaan van Diedenhoven is supported by NASA under project numbers NNX14AJ28G and NNX15AD44G. I would like to thank Dr. Nathan Magee at The College of New Jersey for providing the electron microscope images of hexagonal ice crystals images. I am grateful to Dr. Ping Yang for providing the optical properties of complex ice crystals.

References

  1. Abdelmonem A, Schnaiter M, Amsler P, Hesse E, Meyer J, Leisner T (2011) First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe. Atmos Meas Tech 4:2125–2142.  https://doi.org/10.5194/amt-4-2125-2011 CrossRefGoogle Scholar
  2. Alexandrov MD, Cairns B, Emde C, Ackerman AS, van Diedenhoven B (2012) Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the Research Scanning Polarimeter. Remote Sens Environ 125:92–111.  https://doi.org/10.1016/j.rse.2012.07.012 ADSCrossRefGoogle Scholar
  3. Amsler P, Stetzer O, Schnaiter M, Hesse E, Benz S, Moehler O, Lohmann U (2009) Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements. Appl Opt 48:5811.  https://doi.org/10.1364/AO.48.005811 ADSCrossRefGoogle Scholar
  4. Auer A, Veal D (1970) The dimension of ice crystals in natural clouds. J Atmos Sci 27:919–926.  https://doi:10.1175/1520-0469(1970)027,0919:TDOICI.2.0.CO;2
  5. Aufm Kampe HJ, Weickmann HK, Kelly JJ, Aufm Kampe HJ, Weickmann HK, Kelly JJ (1951) The influence of temperature on the shape of ice crystals growing at water saturation. J Meteorol 8:168–174. https://doi.org/10.1175/1520-0469(1951)008<0168:TIOTOT>2.0.CO;2 CrossRefGoogle Scholar
  6. Ávila EE, Castellano NE, Saunders CPR, Bürgesser RE, Aguirre Varela GG (2009) Initial stages of the riming process on ice crystals. Geophys Res Lett 36:808.  https://doi.org/10.1029/2009GL037723 CrossRefGoogle Scholar
  7. Bailey MP, Hallett J (2009) A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies. J Atmos Sci 66:2888–2899.  https://doi.org/10.1175/2009JAS2883.1 ADSCrossRefGoogle Scholar
  8. Bailey M, Hallett J, Bailey M, Hallett J (2004) Growth rates and habits of ice crystals between −20 and −70 °C. J Atmos Sci 61:514–544. https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2 ADSCrossRefGoogle Scholar
  9. Bailey M, Hallett J, Bailey M, Hallett J (2012) Ice crystal linear growth rates from −20 to −70 °C: confirmation from wave cloud studies. J Atmos Sci 69:390–402.  https://doi.org/10.1175/JAS-D-11-035.1 ADSCrossRefGoogle Scholar
  10. Baran AJ (2009) A review of the light scattering properties of cirrus. J Quant Spectrosc Radiat Transfer 110:1239–1260.  https://doi.org/10.1016/j.jqsrt.2009.02.026 ADSCrossRefGoogle Scholar
  11. Baran A, C.-Labonnote L (2006) On the reflection and polarisation properties of ice cloud. J Quant Spectrosc Radiat Transfer 100:41–54. https://doi.org/10.1016/j.jqsrt.2005.11.062
  12. Baran AJ, C.-Labonnote L (2007) A self-consistent scattering model for cirrus. I: the solar region. Q J R Meteorol Soc 133:1899–1912.  https://doi.org/10.1002/qj.164 ADSCrossRefGoogle Scholar
  13. Baran AJ, Watts PD, Foot JS (1998) Potential retrieval of dominating crystal habit and size using radiance data from a dual-view and multiwavelength instrument: a tropical cirrus anvil case. J Geophys Res 103:6075–6082.  https://doi.org/10.1029/97JD03122 ADSCrossRefGoogle Scholar
  14. Baran AJ, Watts PD, Francis PN (1999) Testing the coherence of cirrus microphysical and bulk properties retrieved from dual-viewing multispectral satellite radiance measurements. J Geophys Res 104:31673–31683.  https://doi.org/10.1029/1999JD900842 ADSCrossRefGoogle Scholar
  15. Baran AJ, Furtado K, Labonnote L-C, Havemann S, Thelen J-C, Marenco F (2015) On the relationship between the scattering phase function of cirrus and the atmospheric state. Atmos Chem Phys 15:1105–1127.  https://doi.org/10.5194/acp-15-1105-2015 ADSCrossRefGoogle Scholar
  16. Baran AJ, Hill P, Walters D, Hardiman SC, Furtado K, Field PR, Manners J (2016) The impact of two coupled cirrus microphysics-radiation parameterizations on the temperature and specific humidity biases in the tropical tropopause layer in a climate model. J Clim 29:5299–5316.  https://doi.org/10.1175/JCLI-D-15-0821.1 ADSCrossRefGoogle Scholar
  17. Baum BA, Yang P, Heymsfield AJ, Platnick S, King MD, Hu YX, Bedka SM (2005) Bulk scattering properties for the remote sensing of ice clouds. Part II: narrowband models. J Appl Meteorol 44:1896–1911CrossRefGoogle Scholar
  18. Baum BA, Yang P, Hu Y-X, Feng Q (2010) The impact of ice particle roughness on the scattering phase matrix. J Quant Spectrosc Radiat Transfer 111:2534–2549.  https://doi.org/10.1016/jjqsrt.2010.07.008 ADSCrossRefGoogle Scholar
  19. Baum BA, Yang P, Heymsfield AJ, Schmitt CG, Xie Y, Bansemer A, Hu Y-X, Zhang Z (2011) Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J Appl Meteorol Clim 50:1037–1056.  https://doi.org/10.1175/2010JAMC2608.1 CrossRefGoogle Scholar
  20. Baum BA, Yang P, Heymsfield AJ, Bansemer A, Cole BH, Merrelli A, Schmitt C, Wang C (2014) Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm. J Quant Spectrosc Radiat Transfer 146:123–139.  https://doi.org/10.1016/j.jqsrt.2014.02.029 ADSCrossRefGoogle Scholar
  21. Bentley WA (1927) Some recent treasures of the snow. Mon Weather Rev 55:358–359. https://doi.org/10.1175/1520-0493(1927)55<358:SRTOTS>2.0.CO;2 ADSCrossRefGoogle Scholar
  22. Berg MJ, Sorensen CM, Chakrabarti A (2011) A new explanation of the extinction paradox. J Quant Spectrosc Radiat Transfer 112:1170–1181.  https://doi.org/10.1016/j.jqsrt.2010.08.024 ADSCrossRefGoogle Scholar
  23. Bi L, Yang P, Liu C, Yi B, Baum BA, van Diedenhoven B, Iwabuchi H (2014) Assessment of the accuracy of the conventional ray-tracing technique: implications in remote sensing and radiative transfer involving ice clouds. J Quant Spectrosc Radiat Transfer 146:158–174.  https://doi.org/10.1016/jjqsrt.2014.03.017 ADSCrossRefGoogle Scholar
  24. Borovoi AG, Kustova NV, Oppel UG (2005) Light backscattering by hexagonal ice crystal particles in the geometrical optics approximation. Opt Eng 44(071):208.  https://doi.org/10.1117/1.1955367 Google Scholar
  25. Borovoi A, Konoshonkin A, Kustova N (2014) The physical-optics approximation and its application to light backscattering by hexagonal ice crystals. J Quant Spectrosc Radiat Transfer 146:181–189.  https://doi.org/10.1016/j.jqsrt.2014.04.030 ADSCrossRefGoogle Scholar
  26. Bourdages L, Duck TJ, Lesins G, Drummond JR, Eloranta EW (2009) Physical properties of high arctic tropospheric particles during winter. Atmos Chem Phys 9:6881–6897. https://doi.org/10.5194/acp-9-6881-2009
  27. Box GEP (1976) Science and statistics. J Am Stat Assoc 71:791–799.  https://doi.org/10.1080/01621459.1976.10480949 MathSciNetzbMATHCrossRefGoogle Scholar
  28. Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, HobokenzbMATHGoogle Scholar
  29. Bréon F-M, Dubrulle B (2004) Horizontally oriented plates in clouds. J Atmos Sci 61:2888–2898.  https://doi.org/10.1175/JAS-3309.1 ADSCrossRefGoogle Scholar
  30. Bryant F, Latimer P (1969) Optical efficiencies of large particles of arbitrary shape and orientation. J Colloid Interface Sci 30:291–304.  https://doi.org/10.1016/0021-9797(69)90396-8 ADSCrossRefGoogle Scholar
  31. Buriez J-C, Doutriaux-Boucher M, Parol F, Loeb NG, Buriez J-C, Doutriaux-Boucher M, Parol F, Loeb NG (2001) Angular variability of the liquid water cloud optical thickness retrieved from ADEOS-POLDER. J Atmos Sci 58:3007–3018. https://doi.org/10.1175/1520-0469(2001)058<3007:AVOTLW>2.0.CO;2 ADSCrossRefGoogle Scholar
  32. Burton SP, Hair JW, Kahnert M, Ferrare RA, Hostetler CA, Cook AL, Harper DB, Berkoff TA, Seaman ST, Collins JE, Fenn MA, Rogers RR (2015) Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar. Atmos Chem Phys 15:13453–13473.  https://doi.org/10.5194/acp-15-13453-2015 ADSCrossRefGoogle Scholar
  33. Cairns B, Russell EE, LaVeigne JD, Tennant PMW (2003) Research scanning polarimeter and airborne usage for remote sensing of aerosols. In: Proceeding SPIE, vol 5158, pp 33–44. https://doi.org/10.1117/12.518320
  34. Chen J, Lamb D (1994) The theoretical basis for the parameterization of ice crystal habits: growth by vapor deposition. J Atmos Sci 51:1206–1222. https://doi.org/10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2 ADSCrossRefGoogle Scholar
  35. Chepfer H, Brogniez G, Fouquart Y (1998) Cirrus clouds’ microphysical properties deduced from POLDER observations. J Quant Spectrosc Radiat Transfer 60:375–390.  https://doi.org/10.1016/S0022-4073(98)00013-2 ADSCrossRefGoogle Scholar
  36. Chepfer H, Goloub P, Riedi J, De Haan J, Hovenier J, Flamant P (2001) Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1. J Geophys Res 106:7955–7966. https://doi.org/10.1029/2000JD900285
  37. Chepfer H, Minnis P, Young D, Nguyen L, Arduini RF (2002) Estimation of cirrus cloud effective ice crystal shapes using visible reflectances from dual-satellite measurements. J Geophys Res 107:AAC 21-1–AAC 21-16.  https://doi.org/10.1029/2000JD000240 CrossRefGoogle Scholar
  38. Choi Y-S, Ho C-H, Kim J, Lindzen RS (2010) Satellite retrievals of (quasi-)spherical particles at cold temperatures. Geophys Res Lett 37:1–5.  https://doi.org/10.1029/2009GL041818 Google Scholar
  39. C.-Labonnote L, Brogniez G, Doutriaux-Boucher M, Buriez J, Gayet J, Chepfer H (2000) Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals. Comparison with in-situ and ADEOS-POLDER measurements. Geophys Res Lett 27:113–116.  https://doi.org/10.1029/1999GL010839 ADSCrossRefGoogle Scholar
  40. C.-Labonnote L, Brogniez G, Buriez J-C, Doutriaux-Boucher M, Gayet J-F, Macke A (2001) Polarized light scattering by in- homogeneous hexagonal monocrystals: validation with ADEOS-POLDER measurements. J Geophys Res 106:12139–12153.  https://doi.org/10.1029/2000JD900642 ADSCrossRefGoogle Scholar
  41. Coakley JAJ, Chylek P (1975) The two-stream approximation in radiative transfer: including the angle of the incident radiation. J Atmos Sci 32:409–418.  https://doi.org/10.1175/1520-0469(1975)032<0409:TTSAIR>2.0.CO;2
  42. Cole BH, Yang P, Baum BA, Riedi J, C.-Labonnote L, Thieuleux F, Platnick S (2013) Comparison of PARASOL observations with polarized reflectances simulated using different ice habit mixtures. J Appl Met Climatol 52:186–196.  https://doi.org/10.1175/JAMC-D-12-097.1 CrossRefGoogle Scholar
  43. Cole BH, Yang P, Baum BA, Riedi J, C.-Labonnote L (2014) Ice particle habit and surface roughness derived from PARASOL polarization measurements. Atmos Chem Phys 14:3739–3750.  https://doi.org/10.5194/acp-14-3739-2014 ADSCrossRefGoogle Scholar
  44. Connolly PJ, Saunders CPR, Gallagher MW, Bower KN, Flynn MJ, Choularton TW, Whiteway J, Lawson RP (2005) Aircraft observations of the influence of electric fields on the aggregation of ice crystals. Q J R Meteorol Soc 131:1695–1712.  https://doi.org/10.1256/qj.03.217 ADSCrossRefGoogle Scholar
  45. Cross JD (1969) Scanning electron microscopy of evaporating ice. Science 164:174–175.  https://doi.org/10.1126/science.164.3876.174 ADSCrossRefGoogle Scholar
  46. Del Guasta M (2001) Simulation of LIDAR returns from pristine and deformed hexagonal ice prisms in cold cirrus by means of “face tracing”. J Geophys Res 106:12589–12602. https://doi.org/10.1029/2000JD900724
  47. Del Guasta M, Vallar E, Riviere O, Castagnoli F, Venturi V, Morandi M (2006) Use of polarimetric lidar for the study of oriented ice plates in clouds. Appl Opt 45:4878–4887. https://doi.org/10.1364/AO.45.004878
  48. Deschamps P-Y, Breon F-M, Leroy M, Podaire A, Bricaud A, Buriez J-C, Seze G (1994) The POLDER mission: instrument characteristics and scientific objectives. IEEE Trans Geosci Remote Sens 32:598–615.  https://doi.org/10.1109/36.297978 ADSCrossRefGoogle Scholar
  49. Diner D, Beckert J, Bothwell G, Rodriguez J (2002) Performance of the MISR instrument during its first 20 months in Earth orbit. IEEE Trans Geosci Remote Sens 40:1449–1466.  https://doi.org/10.1109/TGRS.2002.801584 ADSCrossRefGoogle Scholar
  50. Diner DJ, Xu F, Garay MJ, Martonchik JV, Rheingans BE, Geier S, Davis A, Hancock BR, Jovanovic VM, Bull MA, Capraro K, Chipman RA, McClain SC (2013) The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol and cloud remote sensing. Atmos Meas Tech 6:2007–2025.  https://doi.org/10.5194/amt-6-2007-2013 CrossRefGoogle Scholar
  51. Doutriaux-Boucher M, Buriez J, Brogniez G, C.-Labonnote L, Baran AJ (2000) Sensitivity of retrieved POLDER directional cloud optical thickness to various ice particle models. Geophys Res Lett 27:109.  https://doi.org/10.1029/1999GL010870 ADSCrossRefGoogle Scholar
  52. Fougnie B, Bracco G, Lafrance B, Ruffel C, Hagolle O, Tinel C (2007) PARASOL in-flight calibration and performance. Appl Opt 46:5435–5451. https://doi.org/10.1364/AO.46.005435
  53. Fridlind AM, Atlas R, van Diedenhoven B, Um J, McFarquhar GM, Ackerman AS, Moyer EJ, Lawson RP (2016) Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model. Atmos Chem Phys 16:7251–7283.  https://doi.org/10.5194/acp-16-7251-2016 ADSCrossRefGoogle Scholar
  54. Fu Q (2007) A new parameterization of an asymmetry factor of cirrus clouds for climate models. J Atmos Sci 64:4140.  https://doi.org/10.1175/2007JAS2289.1 ADSCrossRefGoogle Scholar
  55. Furtado K, Field PR, Cotton R, Baran AJ (2015) The sensitivity of simulated high clouds to ice crystal fall speed, shape and size distribution. Q J R Meteorol Soc 141:1546–1559.  https://doi.org/10.1002/qj.2457 ADSCrossRefGoogle Scholar
  56. Gallagher MW, Connolly PJ, Crawford I, Heymsfield A, Bower KN, Choularton TW, Allen G, Flynn MJ, Vaughan G, Hacker J (2012) Observations and modelling of microphysical variability, aggregation and sedimentation in tropical anvil cirrus outflow regions. Atmos Chem Phys 12:6609–6628.  https://doi.org/10.5194/acp-12-6609-2012 ADSCrossRefGoogle Scholar
  57. Gao B, Goetz AFH, Wiscombe WJ (1993) Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band. Geophys Res Lett 20:301.  https://doi.org/10.1029/93GL00106 ADSCrossRefGoogle Scholar
  58. Geogdzhayev I, van Diedenhoven B (2016) The effect of roughness model on scattering properties of ice crystals. J Quant Spectrosc Radiat Transfer 178:134–141.  https://doi.org/10.1016/j.jqsrt.2016.03.001 ADSCrossRefGoogle Scholar
  59. Gimmestad GG (2008) Reexamination of depolarization in lidar measurements. Appl Opt 47:3795.  https://doi.org/10.1364/AO.47.003795 ADSCrossRefGoogle Scholar
  60. Gonda T, Yamazaki T (1978) Morphology of ice droxtals grown from supercooled water droplets. J Crystal Growth 45:66–69.  https://doi.org/10.1016/0022-0248(78)90416-5 ADSCrossRefGoogle Scholar
  61. Greenler R (1990) Rainbows, halos, and glories. Cambridge University Press, CambridgeGoogle Scholar
  62. Gu Y, Liou KN (2000) Interactions of radiation, microphysics, and turbulence in the evolution of cirrus clouds. J Atmos Sci 57:2463. https://doi.org/10.1175/1520-0469(2000)057<2463:IORMAT>2.0.CO;2 ADSCrossRefGoogle Scholar
  63. Gu Y, Liou KN, Ou SC, Fovell R (2011) Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J Geophys Res 116(D06):119.  https://doi.org/10.1029/2010JD014574 Google Scholar
  64. Hallett J, Mason BJ (1958) The influence of temperature and supersaturation on the habit of ice crystals grown from the vapour. Proc Royal Soc A 247:440–453.  https://doi.org/10.1098/rspa.1958.0199 ADSCrossRefGoogle Scholar
  65. Harrington JY, Sulia K, Morrison H (2013) A method for adaptive habit prediction in bulk microphysical models. Part I: theoretical development. J Atmos Sci 70:349–363.  https://doi.org/10.1175/JAS-D-12-040.1 ADSCrossRefGoogle Scholar
  66. Hashino T, Tripoli GJ, Hashino T, Tripoli GJ (2007) The Spectral Ice Habit Prediction System (SHIPS). Part I: model description and simulation of the vapor deposition process. J Atmos Sci 64:2210–2237.  https://doi.org/10.1175/JAS3963.1 ADSCrossRefGoogle Scholar
  67. Hashino T, Tripoli GJ, Hashino T, Tripoli GJ (2011) The Spectral Ice Habit Prediction System (SHIPS). Part III: description of the ice particle model and the habit-dependent aggregation model. J Atmos Sci 68:1125–1141.  https://doi.org/10.1175/2011JAS3666.1 ADSCrossRefGoogle Scholar
  68. Heymsfield A (1972) Ice crystal terminal velocities. J Atmos Sci 29:1348–1357. https://doi.org/10.1175/1520-0469(1972)029<1348:ICTV>2.0.CO;2 ADSCrossRefGoogle Scholar
  69. Heymsfield AJ, Lewis S, Bansemer A, Iaquinta J, Miloshevich LM, Kajikawa M, Twohy C, Poellot MR (2002) A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J Atmos Sci 59:3–29. https://doi.org/10.1175/1520-0469(2002)059<0003:AGAFDT>2.0.CO;2
  70. Hioki S, Yang P, Baum BA, Platnick S, Meyer KG, King MD, Riedi J (2016) Degree of ice particle surface roughness inferred from polarimetric observations. Atmos Chem Phys 16:7545–7558.  https://doi.org/10.5194/acp-16-7545-2016 ADSCrossRefGoogle Scholar
  71. Holz RE, Platnick S, Meyer K, Vaughan M, Heidinger A, Yang P, Wind G, Dutcher S, Ackerman S, Amarasinghe N, Nagle F, Wang C (2016) Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals. Atmos Chem Phys 16:5075–5090.  https://doi.org/10.5194/acp-16-5075-2016 ADSCrossRefGoogle Scholar
  72. Hong G, Minnis P (2015) Effects of spherical inclusions on scattering properties of small ice cloud particles. J Geophys Res 120:29512969.  https://doi.org/10.1002/2014JD022494 Google Scholar
  73. Hooke R (1665) Micrographia. Warnock Library, LondonGoogle Scholar
  74. Hu Y-X, Winker D, Yang P, Baum B, Poole L, Vann L (2001) Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study. J Quant Spectrosc Radiat Transfer 70:569–579.  https://doi.org/10.1016/S0022-4073(01)00030-9 ADSCrossRefGoogle Scholar
  75. Hudait A, Molinero V (2016) What determines the ice polymorph in clouds? J Am Chem Soc 138:8958–8967.  https://doi.org/10.1021/jacs.6b05227 CrossRefGoogle Scholar
  76. Iaquinta J, Isaka H, Personne P (1995) Scattering phase function of bullet rosette ice crystals. J Atmos Sci 52:1401–1413. https://doi.org/10.1175/1520-0469(1995)052<1401:SPFOBR>2.0.CO;2 ADSCrossRefGoogle Scholar
  77. Jacobowitz H (1971) A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals. J Quant Spectrosc Radiat Transfer 11:691–695.  https://doi.org/10.1016/0022-4073(71)90047-1 ADSCrossRefGoogle Scholar
  78. Järvinen E, Schnaiter M, Mioche G, Jourdan O, Shcherbakov VN, Costa A, Afchine A, Krämer M, Heidelberg F, Jurkat T, Voigt C, Schlager H, Nichman L, Gallagher M, Hirst E, Schmitt C, Bansemer A, Heymsfield A, Lawson P, Tricoli U, Pfeilsticker K, Vochezer P, Mohler O, Leisner T (2016) Quasi-spherical ice in convective clouds. J Atmos Sci 73:3885–3910.  https://doi.org/10.1175/JAS-D-15-0365.1
  79. Key JR, Yang P, Baum BA, Nasiri S (2002) Parameterization of shortwave ice cloud optical properties for various particle habits. J Geophys Res 107:4181.  https://doi.org/10.1029/2001JD000742 CrossRefGoogle Scholar
  80. Kikuchi K, Kameda T, Higuchi K, Yamashita A (2013) A global classification of snow crystals, ice crystals, and solid precipitation based on observations from middle latitudes to polar regions. Atmos Res 132:460–472.  https://doi.org/10.1016/j.atmosres.2013.06.006 CrossRefGoogle Scholar
  81. Knap WH, C.-Labonnote L, Brogniez G, Stammes P (2005) Modeling total and polarized reflectances of ice clouds: evaluation by means of POLDER and ATSR-2 measurements. Appl Opt 44:4060.  https://doi.org/10.1364/AO.44.004060 ADSCrossRefGoogle Scholar
  82. Kokhanovsky A (2008) The contrast and brightness of halos in crystalline clouds. Atmos Res 89:110–112.  https://doi.org/10.1016/j.atmosres.2007.12.006 CrossRefGoogle Scholar
  83. Konoshonkin AV, Kustova NV, Shishko VA, Borovoi AG (2016) The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning. Atmos Oceanic Opt 29:252–262.  https://doi.org/10.1134/S1024856016030088 CrossRefGoogle Scholar
  84. Korolev AV, Isaac G (2003) Roundness and aspect ratio of particles in ice clouds. J Atmos Sci 60:1795–1808ADSCrossRefGoogle Scholar
  85. Kuhs WF, Sippel C, Falenty A, Hansen TC (2012) Extent and relevance of stacking disorder in “ice I(c)”. Proc Nat Acad Sci 109:21259–21264.  https://doi.org/10.1073/pnas.1210331110 ADSCrossRefGoogle Scholar
  86. Lawson RP, Baker BA, Schmitt CG, Jensen TL (2001) An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J Geophys Res 106(14):989–15014.  https://doi.org/10.1029/2000JD900789 Google Scholar
  87. Lawson RP, Baker B, Pilson B, Mo Q (2006) In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: cirrus clouds. J Atmos Sci 63:3186.  https://doi.org/10.1175/JAS3803.1 ADSCrossRefGoogle Scholar
  88. Lawson RP, Jensen E, Mitchell DL, Baker B, Mo Q, Pilson B (2010) Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J Geophys Res 115. https://doi.org/10.1029/2009JD013017
  89. Lefebvre A, Heliere A, Perez Albinana A, Wallace K, Maeusli D, Lemanczyk J, Lusteau C, Nakatsuka H, Tomita E (2016) Earth- CARE mission, overview, implementation approach and development status. In: Xiong XJ, Kuriakose SA, Kimura T (eds) Proceeding SPIE, vol 9881, p 98810P. https://doi.org/10.1117/12.2223955
  90. Lensky IM, Rosenfeld D (2006) The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius. Atmos Chem Phys 6:2887–2894.  https://doi.org/10.5194/acp-6-2887-2006 ADSCrossRefGoogle Scholar
  91. Letu H, Ishimoto H, Riedi J, Nakajima TY, C.-Labonnote L, Baran AJ, Nagao TM, Sekiguchi M (2016) Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission. Atmos Chem Phys 16(12287–12):303.  https://doi.org/10.5194/acp-16-12287-2016 Google Scholar
  92. Lindqvist H, Muinonen K, Nousiainen T, Um J, McFarquhar GM, Haapanala P, Makkonen R, Hakkarainen H (2012) Ice-cloud particle habit classification using principal components. J Geophys Res 117:D16.  https://doi.org/10.1029/2012JD017573 CrossRefGoogle Scholar
  93. Liou K-N, Yang P (2016) Light scattering by ice crystals: fundamentals and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  94. Liu C, Yang P, Minnis P, Loeb N, Kato S, Heymsfield A, Schmitt C (2014) A two-habit model for the microphysical and optical properties of ice clouds. Atmos Chem Phys 14:13719–13737.  https://doi.org/10.5194/acp-14-13719-2014 ADSCrossRefGoogle Scholar
  95. Liu C, Lee Panetta R, Yang P (2013) The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes. J Quant Spectrosc Radiat Transfer 129:169–185.  https://doi.org/10.1016/j.jqsrt.2013.06.011 ADSCrossRefGoogle Scholar
  96. López ML, Avila EE (2012) Deformations of frozen droplets formed at −40 °C. Geophys Res Lett 39. https://doi.org/10.1029/2011GL050185
  97. Macke A (1993) Scattering of light by polyhedral ice crystals. Appl Opt 32:2780–2788. https://doi.org/10.1364/AO.32.002780
  98. Macke A, Mishchenko MI, Cairns B (1996a) The influence of inclusions on light scattering by large ice particles. J Geophys Res 101:23311–23316.  https://doi.org/10.1029/96JD02364 ADSCrossRefGoogle Scholar
  99. Macke A, Mueller J, Raschke E (1996b) Single scattering properties of atmospheric ice crystals. J Atmos Sci 53:2813–2825.  https://doi.org/10.1175/1520-0469(1996)053<2813:SSPOAI>2.0.CO;2
  100. Magee NB, Miller A, Amaral M, Cumiskey A (2014) Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions. Atmos Chem Phys 14:12357–12371.  https://doi.org/10.5194/acp-14-12357-2014 ADSCrossRefGoogle Scholar
  101. Magono C, Lee CW (1966) Meteorological classification of natural snow crystals. J Fac Sci Hokkaido Univ Ser VII 2:321–355. http://hdl.handle.net/2115/8672
  102. Malkin TL, Murray BJ, Brukhno AV, Anwar J, Salzmann CG (2012) Structure of ice crystallized from supercooled water. Proc. Nat Acad Sci 109:1041–1045.  https://doi.org/10.1073/pnas.1113059109 ADSCrossRefGoogle Scholar
  103. Malkin TL, Murray BJ, Salzmann CG, Molinero V, Pickering SJ, Whale TF (2015) Stacking disorder in ice I. Phys Chem Chem Phys 17:60–76.  https://doi.org/10.1039/c4cp02893g CrossRefGoogle Scholar
  104. Marbach T, Phillips P, Lacan A, Schlussel P (2013) The Multi-Viewing, -Channel, -Polarisation Imager (3MI) of the EUMETSAT Polar System - Second Generation (EPS-SG) dedicated to aerosol characterisation. In: Meynart R, Neeck SP, Shimoda H (eds) Proceeding SPIE vol 8889, p 88890I. https://doi.org/10.1117/12.2028221, 2013Google Scholar
  105. Martins E, Noel V, Chepfer H (2011) Properties of cirrus and subvisible cirrus from nighttime Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), related to atmospheric dynamics and water vapor. J Geophys Res 116:D02208.  https://doi.org/10.1029/2010JD014519 ADSCrossRefGoogle Scholar
  106. Mason BJ (1953) The growth of ice crystals in a supercooled water cloud. Q J R Meteorol Soc 79:104–111.  https://doi.org/10.1002/qj.49707933909 ADSCrossRefGoogle Scholar
  107. Mason BJ, Bryant GW, Van den Heuvel AP (1963) The growth habits and surface structure of ice crystals. Phil Mag 8:505–526.  https://doi.org/10.1080/14786436308211150 ADSCrossRefGoogle Scholar
  108. May PT, Mather JH, Vaughan G, Jakob C, McFarquhar GM, Bower KN, Mace GG (2008) The tropical warm pool international cloud experiment. Bull Am Meteorol Soc 89:629.  https://doi.org/10.1175/BAMS-89-5-629 CrossRefGoogle Scholar
  109. McFarlane SA, Marchand RT (2008) Analysis of ice crystal habits derived from MISR and MODIS observations over the ARM Southern Great Plains site. J Geophys Res 113:1–17.  https://doi.org/10.1029/2007JD009191 Google Scholar
  110. Miao J, Johnsen K-P, Buehler S, Kokhanovsky A (2003) The potential of polarization measurements from space at mm and sub-mm wavelengths for determining cirrus cloud parameters. Atmos Chem Phys 3:39–48.  https://doi.org/10.5194/acp-3-39-2003 ADSCrossRefGoogle Scholar
  111. Mie G (1908) Beiträge zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann Phys 330:377–445.  https://doi.org/10.1002/andp.19083300302 zbMATHCrossRefGoogle Scholar
  112. Mishchenko MI (1991) Light scattering by randomly oriented axially symmetric particles. J Opt Soc Am A 8:871.  https://doi.org/10.1364/JOSAA.8.000871 ADSCrossRefGoogle Scholar
  113. Mishchenko M, Sassen K (1998) Depolarization of lidar returns by small ice crystals: an application to contrails. Geophys Res Lett 25:101029. https://doi.org/10.1029/97GL03764
  114. Mishchenko MI, Cairns B, Kopp G, Schueler CF, Fafaul BA, Hansen JE, Hooker RJ, Itchkawich T, Maring HB, Travis LD (2007) Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission. Bull Am Meteorol Soc 88:677.  https://doi.org/10.1175/BAMS-88-5-677 CrossRefGoogle Scholar
  115. Mishchenko MI, Alexandrov MD, Cairns B, Travis LD (2016) Multistatic aerosol-cloud lidar in space: a theoretical perspective. J Quant Spectrosc Radiat Transfer 184:180–192.  https://doi.org/10.1016/j.jqsrt.2016.07.015 ADSCrossRefGoogle Scholar
  116. Mitchell D, Arnott W (1994) A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: dependence of absorption and extinction on ice crystal morphology. J Atmos Sci 51:817–832. https://doi.org/10.1175/1520-0469(1994)051<0817:AMPTEO>2.0.CO;2 ADSCrossRefGoogle Scholar
  117. Mizuno Y (1978) Studies of crystal imperfections in ice with reference to the growth process by the use of X-ray diffraction topography and divergent Laue method. J. Glaciol 21:409–418. https://doi.org/10.3189/S0022143000033578
  118. Murray BJ, Salzmann CG, Heymsfield AJ, Dobbie S, Neely RR III, Cox CJ (2015) Trigonal ice crystals in Earth’s atmosphere. Bull Am Meteorol Soc 99:1519.  https://doi.org/10.1175/BAMS-D-13-00128.1
  119. Nakajima T, King MD (1990) Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. I - Theory. J Atmos Sci 47:1878–1893. https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2 ADSCrossRefGoogle Scholar
  120. Nakaya U (1954) Snow crystals—natural and artificial. Harvard Univ Press, Cambridge, MACrossRefGoogle Scholar
  121. Neshyba SP, Lowen B, Benning M, Lawson A, Rowe PM (2013) Roughness metrics of prismatic facets of ice. J Geophys Res 118:3309–3318.  https://doi.org/10.1002/jgrd.50357 Google Scholar
  122. Noel V, Chepfer H, Ledanois G, Delaval A, Flamant PH (2002) Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio. Appl Opt 41:4245.  https://doi.org/10.1364/AO.41.004245 ADSCrossRefGoogle Scholar
  123. Noel V, Winker D, McGill M, Lawson P (2004) Classification of particle shapes from lidar depolarization ratios in convective ice clouds compared to in situ observations during CRYSTAL-FACE. J Geophys Res 109:D24213.  https://doi.org/10.1029/2004JD004883 ADSCrossRefGoogle Scholar
  124. Nousiainen T, Lindqvist H, McFarquhar GM, Um J (2011) Small irregular ice crystals in tropical cirrus. J Atmos Sci 68:2614–2627.  https://doi.org/10.1175/2011JAS3733.1 ADSCrossRefGoogle Scholar
  125. Nussenzveig HM (1977) The theory of the rainbow. Sci Am 236:116–127.  https://doi.org/10.1038/scientificamerican0477-116 CrossRefGoogle Scholar
  126. Ono A (1969) The shape and riming properties of ice crystals in natural clouds. J Atmos Sci 26:138. https://doi.org/10.1175/1520-0469(1969)026<0138:TSARPO>2.0.CO;2 ADSCrossRefGoogle Scholar
  127. Ottaviani M, Cairns B, Chowdhary J, Van Diedenhoven B, Knobelspiesse K, Hostetler C, Ferrare R, Burton S, Hair J, Obland M, Rogers R (2012) Polarimetric retrievals of surface and cirrus clouds properties in the region affected by the Deepwater Horizon oil spill. Remote Sens Environ 121:389–403.  https://doi.org/10.1016/j.rse.2012.02.016 ADSCrossRefGoogle Scholar
  128. Panetta RL, Zhang J-N, Bi L, Yang P, Tang G (2016) Light scattering by hexagonal ice crystals with distributed inclusions. J Quant Spectrosc Radiat Transfer 178:336–349.  https://doi.org/10.1016/j.jqsrt.2016.02.023 ADSCrossRefGoogle Scholar
  129. Pauling L (1935) The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J Am Chem Soc 57:2680–2684.  https://doi.org/10.1021/ja01315a102 CrossRefGoogle Scholar
  130. Peltoniemi JI, Lumme K, Muinonen K, Irvine WM (1989) Scattering of light by stochastically rough particles. Appl Opt 28:4088.  https://doi.org/10.1364/AO.28.004088 ADSCrossRefGoogle Scholar
  131. Pfalzgraff WC, Hulscher RM, Neshyba SP (2010) Scanning electron microscopy and molecular dynamics of surfaces of growing and ablating hexagonal ice crystals. Atmos Chem Phys 10:2927–2935.  https://doi.org/10.5194/acp-10-2927-2010 ADSCrossRefGoogle Scholar
  132. Ping-Yü H, Needham J (1959) Ancient Chinese observations of solar haloes and parhelia. Weather 14:124–134.  https://doi.org/10.1002/j.1477-8696.1959.tb02450.x ADSCrossRefGoogle Scholar
  133. Platnick S (2000) Vertical photon transport in cloud remote sensing problems. J Geophys Res 105:22919–22935.  https://doi.org/10.1029/2000JD900333 ADSCrossRefGoogle Scholar
  134. Reichardt J, Reichardt S, Hess M, McGee TJ (2002) Correlations among the optical properties of cirrus-cloud particles: microphysical interpretation. J Geophys Res 107:AAC 8-1–AAC 8-12.  https://doi.org/10.1029/2002JD002589 CrossRefGoogle Scholar
  135. Reichardt J, Reichardt S, Lin R-F, Hess M, McGee TJ, Starr DO (2008) Optical-microphysical cirrus model. J Geophys Res 113:D22201.  https://doi.org/10.1029/2008JD010071 ADSCrossRefGoogle Scholar
  136. Riedi J, Marchant B, Platnick S, Baum BA, Thieuleux F, Oudard C, Parol F, Nicolas J-M, Dubuisson P (2010) Cloud thermodynamic phase inferred from merged POLDER and MODIS data. Atmos Chem Phys 10:11851–11865.  https://doi.org/10.5194/acp-10-11851-2010 ADSCrossRefGoogle Scholar
  137. Rietjens JHH, Smit M, van Harten G, Di Noia A, Hasekamp OP, de Boer J, Volten H, Snik F, Keller CU (2015) Accurate spectrally modulating polarimeters for atmospheric aerosol characterization. In: Shaw JA, LeMaster DA (eds) Proceeding SPIE, vol 9613, p 96130S. https://doi.org/10.1117/12.2188024
  138. Rodgers C (2000) Inverse methods for atmospheric sounding: theory and practice. World Scientific, SingaporezbMATHCrossRefGoogle Scholar
  139. Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261. https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2 CrossRefGoogle Scholar
  140. Russotto RD, Ackerman TP, Durran DR (2016) Sensitivity of thin cirrus clouds in the tropical tropopause layer to ice crystal shape and radiative absorption. J Geophys Res 121:2955–2972.  https://doi.org/10.1002/2015JD024413 Google Scholar
  141. Sassen K (1977) lidar observations of high plains thunderstorm precipitation. J Atmos Sci 34:1444–1457. https://doi.org/10.1175/1520-0469(1977)034<1444:LOOHPT>2.0.CO;2 ADSCrossRefGoogle Scholar
  142. Sassen K (1991) Rainbows in the Indian rock art of desert western America. Appl Opt 30:3523.  https://doi.org/10.1364/AO.30.003523 ADSCrossRefGoogle Scholar
  143. Sassen K (1994) Possible halo depictions in the prehistoric rock art of Utah. Appl Opt 33:4756.  https://doi.org/10.1364/AO.33.004756 ADSCrossRefGoogle Scholar
  144. Sassen K, Benson S (2001) A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: microphysical properties derived from lidar depolarization. J Atmos Sci 58:2103–2112.  https://doi.org/10.1175/1520-0469(2001)058 ADSCrossRefGoogle Scholar
  145. Sassen K, Petrilla RL (1986) Lidar depolarization from multiple scattering in marine stratus clouds. Appl Opt 25:1450.  https://doi.org/10.1364/AO.25.001450 ADSCrossRefGoogle Scholar
  146. Sassen K, Zhu J (2009) A global survey of CALIPSO linear depolarization ratios in ice clouds: initial findings. J Geophys Res 114:1–12.  https://doi.org/10.1029/2009JD012279 Google Scholar
  147. Sassen K, Zhu J, Benson S (2003) Midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. IV. Optical displays. Appl Opt 42:332.  https://doi.org/10.1364/AO.42.000332 ADSCrossRefGoogle Scholar
  148. Sassen K, Kayetha VK, Zhu J (2012) Ice cloud depolarization for nadir and off-nadir CALIPSO measurements. Geophys Res Lett, 39. https://doi.org/10.1029/2012GL053116
  149. Sayer AM, Poulsen CA, Arnold C, Campmany E, Dean S, Ewen GBL, Grainger RG, Lawrence BN, Siddans R, Thomas GE, Watts PD (2011) Global retrieval of ATSR cloud parameters and evaluation (GRAPE): dataset assessment. Atmos Chem Phys 11:3913–3936.  https://doi.org/10.5194/acp-11-3913-2011 ADSCrossRefGoogle Scholar
  150. Sazaki G, Zepeda S, Nakatsubo S, Yokoyama E, Furukawa Y (2010) Elementary steps at the surface of ice crystals visualized by advanced optical microscopy. PNAS 107:19702–19707.  https://doi.org/10.1073/pnas.1008866107 ADSCrossRefGoogle Scholar
  151. Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer SE, Bhat MK, Bleck R, Canuto V, Chen Y-H, Cheng Y, Clune TL, Del Genio A, de Fainchtein R, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis AA, LeGrande AN, Lerner J, Lo KK, Matthews EE, Menon S, Miller RL, Oinas V, Oloso AO, Perlwitz JP, Puma MJ, Putman WM, Rind D, Romanou A, Sato M, Shindell DT, Sun S, Syed RA, Tausnev N, Tsigaridis K, Unger N, Voulgarakis A, Yao M-S, Zhang J (2014) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst 6:141–184.  https://doi.org/10.1002/2013MS000265 CrossRefGoogle Scholar
  152. Schmitt CG, Heymsfield AJ, Schmitt CG, Heymsfield AJ (2007) On the occurrence of hollow bullet rosette- and column-shaped ice crystals in midlatitude cirrus. J Atmos Sci 64:4514–4519.  https://doi.org/10.1175/2007JAS2317.1 ADSCrossRefGoogle Scholar
  153. Schmitt CG, Schnaiter M, Heymsfield AJ, Yang P, Hirst E, Bansemer A, Schmitt CG, Schnaiter M, Heymsfield AJ, Yang P, Hirst E, Bansemer A (2016) The microphysical properties of small ice particles measured by the Small Ice Detector—3 probe during the MACPEX field campaign. J Atmos Sci, Early online JAS-D-16-0126.1, https://doi.org/10.1175/JAS-D-16-0126.1
  154. Schnaiter M, Buttner S, Möhler O, Skrotzki J, Vragel M, Wagner R (2012) Influence of particle size and shape on the backscattering linear depolarisation ratio of small ice crystals–cloud chamber measurements in the context of contrail and cirrus microphysics. Atmos Chem Phys 12:10465–10484.  https://doi.org/10.5194/acp-12-10465-2012 ADSCrossRefGoogle Scholar
  155. Schnaiter M, Järvinen E, Vochezer P, Abdelmonem A, Wagner R, Jourdan O, Mioche G, Shcherbakov VN, Schmitt CG, Tricoli U, Ulanowski Z, Heymsfield AJ (2016) Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds. Atmos Chem Phys 16:5091–5110.  https://doi.org/10.5194/acp-16-5091-2016 ADSCrossRefGoogle Scholar
  156. Schotland R, Sassen K, Stone R (1971) Observations by Lidar of linear depolarization ratios for hydrometeors. J Appl Met 10:10111017CrossRefGoogle Scholar
  157. Shcherbakov V, Gayet J-F, Jourdan O, Ström J, Minikin A (2006) Light scattering by single ice crystals of cirrus clouds. Geophys Res Lett 33:L15 809.  https://doi.org/10.1029/2006GL026055 CrossRefGoogle Scholar
  158. Sinclair K, van Diedenhoven B, Cairns B, Yorks J, Wasilewski A, McGill M (2017) Remote sensing of multiple cloud layer heights using multi-angular measurements. Atmos Meas Tech 10:2361-2375. https://doi.org/10.5194/amt-10-2361-2017
  159. Smith HR, Connolly PJ, Baran AJ, Hesse E, Smedley AR, Webb AR (2015) Cloud chamber laboratory investigations into scattering properties of hollow ice particles. J Quant Spectrosc Radiat Transfer 157:106–118.  https://doi.org/10.1016/j.jqsrt.2015.02.015 ADSCrossRefGoogle Scholar
  160. Smith HR, Connolly PJ, Webb AR, Baran AJ (2016) Exact and near backscattering measurements of the linear depolarisation ratio of various ice crystal habits generated in a laboratory cloud chamber. J Quant Spectrosc Radiat Transfer. 178:361–378.  https://doi.org/10.1016/j.jqsrt.2016.01.030
  161. Stamnes S, Ou S, Lin Z, Takano Y, Tsay S, Liou K, Stamnes K (2016) Polarized radiative transfer of a cirrus cloud consisting of randomly oriented hexagonal ice crystals: The 3 × 3 approximation for non-spherical particles. J Quant Spectrosc Radiat Transfer. 193:57–68. https://doi.org/10.1016/j.jqsrt.2016.07.001
  162. Stephens GL, Tsay S-C, Stackhouse PWJ, Flatau PJ (1990) The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J Atmos Sci 47:1742–1754.  https://doi.org/10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2
  163. Stoelinga MT, Locatelli JD, Woods CP, Stoelinga MT, Locatelli JD, Woods CP (2007) The occurrence of “irregular” ice particles in stratiform clouds. J Atmos Sci 64:2740–2750.  https://doi.org/10.1175/JAS3962.1 ADSCrossRefGoogle Scholar
  164. Sun W, Loeb N, Yang P (2006) On the retrieval of ice cloud particle shapes from POLDER measurements. J Quant Spectrosc Radiat Transfer 101:435–447.  https://doi.org/10.1016/j.jqsrt.2006.02.071 ADSCrossRefGoogle Scholar
  165. Sun W, Baize RR, Videen G, Hu Y, Fu Q (2015) A method to retrieve super-thin cloud optical depth over ocean background with polarized sunlight. Atmos Chem Phys 15:11909–11918.  https://doi.org/10.5194/acp-15-11909-2015 ADSCrossRefGoogle Scholar
  166. Takano Y, Liou K-N (1989) Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals. J Atmos Sci 46:3–19. https://doi.org/10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2 ADSCrossRefGoogle Scholar
  167. Tape W (1994) Atmospheric halos. American Geophysical UnionGoogle Scholar
  168. Tape W, Moilanen J (2006) Atmospheric Halos and the Search for Angle X, vol 58, American Geophysical Union, Washington, DC. https://doi.org/10.1029/SP058
  169. Toon OB, Starr DO, Jensen EJ, Newman PA, Platnick S, Schoeberl MR, Wennberg PO, Wofsy SC, Kurylo MJ, Maring H, Jucks KW, Craig MS, Vasques MF, Pfister L, Rosenlof KH, Selkirk HB, Colarco PR, Kawa SR, Mace GG, Minnis P, Pickering KE (2010) Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). J Geophys Res 115:4.  https://doi.org/10.1029/2009JD013073 CrossRefGoogle Scholar
  170. Toon OB, Maring H, Dibb J, Ferrare R, Jacob DJ, Jensen EJ, Luo ZJ, Mace GG, Pan LL, Pfister L, Rosenlof KH. Redemann J, Reid JS, Singh HB, Robert Yokelson MP, Chen G, Jucks KW, Pszenny A (2015) Planning, implementation and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission. J Geophys Res, SubmittedGoogle Scholar
  171. Tyo JS, Goldstein DL, Chenault DB, Shaw JA (2006) Review of passive imaging polarimetry for remote sensing applications. Appl Opt 45:5453–5469ADSCrossRefGoogle Scholar
  172. Ulanowski Z, Kaye PH, Hirst E, Greenaway RS, Cotton RJ, Hesse E, Collier CT (2014) Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements. Atmos Chem Phys. 14:1649–1662.  https://doi.org/10.5194/acp-14-1649-2014 ADSCrossRefGoogle Scholar
  173. Um J, McFarquhar GM (2007) Single-scattering properties of aggregates of bullet rosettes in cirrus. J Appl Meteorol Climatol 46:757.  https://doi.org/10.1175/JAM2501.1 ADSCrossRefGoogle Scholar
  174. Um J, McFarquhar GM (2009) Single-scattering properties of aggregates of plates. Q J R Meteorol Soc 135:291–304.  https://doi.org/10.1002/qj.378 ADSCrossRefGoogle Scholar
  175. Um J, McFarquhar GM (2015) Formation of atmospheric halos and applicability of geometric optics for calculating single-scattering properties of hexagonal ice crystals: impacts of aspect ratio and ice crystal size. J Quant Spectrosc Radiat Transfer 165:134–152.  https://doi.org/10.1016/j.jqsrt.2015.07.001 ADSCrossRefGoogle Scholar
  176. Um J, McFarquhar GM, Hong YP, Lee S-S, Jung CH, Lawson RP, Mo Q (2015) Dimensions and aspect ratios of natural ice crystals. Atmos Chem Phys 15:3933–3956.  https://doi.org/10.5194/acp-15-3933-2015 ADSCrossRefGoogle Scholar
  177. van de Hulst HC (1957) Light scattering by small particles. Dover Publications, New YorkGoogle Scholar
  178. van Diedenhoven B (2014) The prevalence of the 22° halo in cirrus clouds. J Quant Spectrosc Radiat Transfer 146:475–479.  https://doi.org/10.1016/j.jqsrt.2014.01.012 ADSCrossRefGoogle Scholar
  179. van Diedenhoven B, Fridlind A, Ackerman A, Eloranta E, McFarquhar G (2009) An evaluation of ice formation in large- eddy simulations of supercooled Arctic stratocumulus using ground-based lidar and cloud radar. J Geophys Res 114:D10203.  https://doi.org/10.1029/2008JD011198 CrossRefGoogle Scholar
  180. van Diedenhoven B, Fridlind A, Ackerman A (2011) Influence of humidified aerosol on lidar depolarization measurements below ice- precipitating arctic stratus. J Appl Meteorol Climatol 50:2184–2192.  https://doi.org/10.1175/JAMC-D-11-037.1 ADSCrossRefGoogle Scholar
  181. van Diedenhoven B, Cairns B, Geogdzhayev IV, Fridlind AM, Ackerman AS, Yang P, Baum BA (2012a) Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements—Part 1: methodology and evaluation with simulated measurements. Atmos Meas Tech 5:2361–2374.  https://doi.org/10.5194/amt-5-2361-2012 CrossRefGoogle Scholar
  182. van Diedenhoven B, Fridlind AM, Ackerman AS, Cairns B (2012b) Evaluation of hydrometeor phase and ice properties in cloud- resolving model simulations of tropical deep convection using radiance and polarization measurements. J Atmos Sci 69:3290–3314.  https://doi.org/10.1175/JAS-D-11-0314.1 ADSCrossRefGoogle Scholar
  183. van Diedenhoven B, Cairns B, Fridlind AM, Ackerman AS, Garrett TJ (2013) Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements—Part 2: application to the Research Scanning Polarimeter. Atmos Chem Phys 13:3185–3203.  https://doi.org/10.5194/acp-13-3185-2013 ADSCrossRefGoogle Scholar
  184. van Diedenhoven B, Ackerman A, Cairns B, Fridlind A (2014a) A flexible parameterization for shortwave optical properties of ice crystals. J Atmos Sci 71:1763–1782.  https://doi.org/10.1175/JAS-D-13-0205.1 ADSCrossRefGoogle Scholar
  185. van Diedenhoven B, Fridlind AM, Cairns B, Ackerman AS (2014b) Variation of ice crystal size, shape, and asymmetry parameter in tops of tropical deep convective clouds. J Geophys Res 119:11809–11825.  https://doi.org/10.1002/2014JD022385 Google Scholar
  186. van Diedenhoven B, Ackerman AS, Fridlind AM, Cairns B, van Diedenhoven B, Ackerman AS, Fridlind AM, Cairns B (2016a) On averaging aspect ratios and distortion parameters over ice crystal population ensembles for estimating effective scattering asymmetry parameters. J Atmos Sci 73:775–787.  https://doi.org/10.1175/JAS-D-15-0150.1 ADSCrossRefGoogle Scholar
  187. van Diedenhoven B, Fridlind AM, Cairns B, Ackerman AS, Yorks JE (2016b) Vertical variation of ice particle size in convective cloud tops. Geophys Res Lett 43:4586–4593.  https://doi.org/10.1002/2016GL068548 ADSCrossRefGoogle Scholar
  188. Verschure P-PH (1998) Thirty years of observing and documenting sky optical phenomena. Appl Opt 37:1585.  https://doi.org/10.1364/AO.37.001585 ADSCrossRefGoogle Scholar
  189. Vouk V (1948) Projected area of convex bodies. Nature 162:330. https://doi.org/doi:10.1038/162330a0
  190. Wang C, Yang P, Dessler A, Baum BA, Hu Y (2014) Estimation of the cirrus cloud scattering phase function from satellite observations. J Quant Spectrosc Radiat Transfer 138:36–49.  https://doi.org/10.1016/j.jqsrt.2014.02.001 ADSCrossRefGoogle Scholar
  191. Weickmann HK (1945) Formen und Bildung atmospharischer Eiskristalle. Beitr Phys fr Atm 28:12–52Google Scholar
  192. Weitkamp C ed (2005) Lidar, range-resolved optical remote sensing of the atmosphere. Springer, New York. https://doi.org/10.1080/00107510902990209
  193. Wendling P, Wendling R, Weickmann HK (1979) Scattering of solar radiation by hexagonal ice crystals. Appl Opt 18:2663.  https://doi.org/10.1364/AO.18.002663 ADSCrossRefGoogle Scholar
  194. Winker DM, Hunt WH, McGill MJ (2007) Initial performance assessment of CALIOP. Geophys Res Lett 34:L19 803.  https://doi.org/10.1029/2007GL030135 CrossRefGoogle Scholar
  195. Wyser K, Yang P (1998) Average ice crystal size and bulk short-wave single-scattering properties of cirrus clouds. Atmos Res 49:315–335.  https://doi.org/10.1016/S0169-8095(98)00083-0 CrossRefGoogle Scholar
  196. Xie Y, Yang P, Kattawar GW, Baum BA, Hu Y (2011) Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds. Appl Opt 50:1065.  https://doi.org/10.1364/AO.50.001065 ADSCrossRefGoogle Scholar
  197. Yang P, Fu Q (2009) Dependence of ice crystal optical properties on particle aspect ratio. J Quant Spectrosc Radiat Transfer 110:16041614.  https://doi.org/10.1016/j.jqsrt.2009.03.004 Google Scholar
  198. Yang P, Liou K (1998) Single-scattering properties of complex ice crystals in terrestrial atmosphere. Control Atmos Phys 71:223–248Google Scholar
  199. Yang P, Hong G, Kattawar G, Minnis P (2008a) Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II - Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans Geosci Rem Sens 46:1948–1957.  https://doi.org/10.1109/TGRS.2008.916472 ADSCrossRefGoogle Scholar
  200. Yang P, Zhang Z, Kattawar GW, Warren SG, Baum BA, Huang H-L, Hu YX, Winker D, Iaquinta J (2008b) Effect of cavities on the optical properties of bullet rosettes: implications for active and passive remote sensing of ice cloud properties. J Appl Meteorol Clim 47:2311–2330.  https://doi.org/10.1175/2008JAMC1905.1 CrossRefGoogle Scholar
  201. Yang P, Bi L, Baum BA, Liou K-N, Kattawar GW, Mishchenko MI, Cole B (2013) Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J Atmos Sci 70:330–347.  https://doi.org/10.1175/JAS-D-12-039.1 ADSCrossRefGoogle Scholar
  202. Yang P, Liou K-N, Bi L, Liu C, Yi B, Baum BA (2015) On the radiative properties of ice clouds: light scattering, remote sensing, and radiation parameterization. Adv Atmos Sci 32:32–63.  https://doi.org/10.1007/s00376-014-0011-z CrossRefGoogle Scholar
  203. Yi B, Yang P, Baum BA, L’Ecuyer T, Oreopoulos L, Mlawer EJ, Heymsfield AJ, Liou K-N (2013) Influence of ice particle surface roughening on the global cloud radiative effect. J Atmos Sci 70:2794–2807.  https://doi.org/10.1175/JAS-D-13-020.1 ADSCrossRefGoogle Scholar
  204. Yorks JE, Hlavka DL, Hart WD, McGill MJ (2011) Statistics of cloud optical properties from airborne lidar measurements. J Atmos Oceanic Technol 28:869–883ADSCrossRefGoogle Scholar
  205. Zakharova NT, Mishchenko MI (2000) Scattering properties of needlelike and platelike ice spheroids with moderate size parameters. Appl Opt 39:5052.  https://doi.org/10.1364/AO.39.005052 ADSCrossRefGoogle Scholar
  206. Zhang Z, Yang P, Kattawar G, Riedi J, Baum BA, Platnick S, Huang H (2009) Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparison. Atmos Chem Phys 9:7115–7129ADSCrossRefGoogle Scholar
  207. Zhou C, Yang P, Dessler AE, Hu Y, Baum BA (2012) Study of horizontally oriented ice crystals with CALIPSO observations and comparison with Monte Carlo radiative transfer simulations. J Appl Meteorol Climatol 59:1426–1439.  https://doi.org/10.1175/JAMC-D-11-0265.1 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Center for Climate System ResearchColumbia UniversityNew YorkUSA
  2. 2.NASA Goddard Institute for Space StudiesNew YorkUSA

Personalised recommendations