Light Scattering by Large Bubbles

  • Fabrice R. A. OnofriEmail author
  • Matthias P. L. Sentis
Part of the Springer Series in Light Scattering book series (SSLS)


This review highlights the various electromagnetic methods, geometrical and physical optics approximations developed so far in the literature to predict the light scattering properties of large bubbles in an optically dilute regime. The underlying problematic is essentially linked to the characterization of bubbly flows or, more generally, multiphase flows, where most optical diagnostics are based on the analysis of the scattering diagrams, caustics and singularities with interferometric or diffractometric techniques.



The authors want to acknowledge Prof. K-F. Ren for providing them calculations with VCRM. This work was partially funded by the French National Research Agency (ANR) under grants AMO-COPS (ANR-13-BS09-0008-02), Labex MEC (ANR-11-LABX-0092), and A*MIDEX (ANR-11-IDEX-0001-0).


  1. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover Inc, New YorkGoogle Scholar
  2. Adam JA (2002) The mathematical physics of rainbows and glories. Phys Rep 356(4–5):229–365ADSzbMATHCrossRefGoogle Scholar
  3. Aiello A, Woerdman J (2008) Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. Opt Lett 33(13):1437–1439ADSCrossRefGoogle Scholar
  4. Arnott WP, Marston PL (1988) Optical glory of small freely rising gas bubbles in water: observed and computed cross-polarized backscattering patterns. J Opt Soc Am A 5(4):496–506ADSCrossRefGoogle Scholar
  5. Artmann K (1948) Berechnung der Seitenversetzung des totalreflektierten Strahles. Ann Phys 437(1–2):87–102zbMATHCrossRefGoogle Scholar
  6. Asano S, Yamamoto G (1975) Light scattering by a spheroidal particle. Appl Opt 14(1):29–49ADSCrossRefGoogle Scholar
  7. Barber SC, Hill PW (1990) Light scattering by particles: computational methods. World Scientific, SingaporeGoogle Scholar
  8. Barton JP (1997) Electromagnetic-field calculations for a sphere illuminated by a higher-order Gaussian beam. I. Internal and near-field effects. Appl Opt 36(6):1303–1311ADSCrossRefGoogle Scholar
  9. Berman P (2012) Goos-Hänchen effect. Scholarpedia 7(3):11584ADSCrossRefGoogle Scholar
  10. Bhandari R (1985) Scattering coefficients for a multilayered sphere: analytic expressions and algorithms. Appl Opt 24(13):1960–1967ADSCrossRefGoogle Scholar
  11. Bohren CF, Clothiaux EE (2008) Fundamentals of atmospheric radiation: an introduction with 400 problems. Wiley VCH, WeinheimGoogle Scholar
  12. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  13. Borghese F, Denti P, Saija R (1994) Optical properties of spheres containing several spherical inclusions. Appl Opt 33(3):484–493ADSCrossRefGoogle Scholar
  14. Bosbach J, Kühn M, Wagner C (2009) Large scale particle image velocimetry with helium filled soap bubbles. Exp Fluids 46(3):539–547CrossRefGoogle Scholar
  15. Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, OxfordGoogle Scholar
  16. Bunkin NF, Suyazov NV, Shkirin AV, Ignatiev PS, Indukaev KV (2009) Nanoscale structure of dissolved air bubbles in water as studied by measuring the elements of the scattering matrix. J Chem Phys 130(13):134308ADSCrossRefGoogle Scholar
  17. Bunner B, Tryggvason G (1999) Direct numerical simulations of three-dimensional bubbly flows. Phys Fluids 11:1967–1969ADSzbMATHCrossRefGoogle Scholar
  18. Celata GP, D’Annibale F, Di Marco P, Memoli G, Tomiyama A (2007) Measurements of rising velocity of a small bubble in a stagnant fluid in one- and two-component systems. Exp Thermal Fluid Sci 31(6):609–623CrossRefGoogle Scholar
  19. Chang SC, Jin JM, Jin J, Zhang S (1996) Computations of special functions. Wiley, New YorkGoogle Scholar
  20. Clift R, Grace JR, Weber ME (1978) Bubbles drops and particles. Academic Press, New YorkGoogle Scholar
  21. Cooke DD, Kerker M (1969) Light scattering from long thin glass cylinders at oblique incidence. J Opt Soc Am A 59(1):43–48CrossRefGoogle Scholar
  22. Cooray MFR, Ciric IR (1993) Wave scattering by a chiral spheroid. J Opt Soc Am A 10(6):1197–1203ADSCrossRefGoogle Scholar
  23. Dave JV (1969) Scattering of visible light by large water spheres. Appl Opt 8(1):155–164ADSCrossRefGoogle Scholar
  24. Davis GE (1955) Scattering of light by an air bubble in water. J Opt Soc Am A 45(7):572–581CrossRefGoogle Scholar
  25. Debye P (1909) Der lichtdruck auf kugeln von beliebigem material. Ann Phys 30:57–136zbMATHCrossRefGoogle Scholar
  26. Dehaeck S, van Beeck JPAJ, Riethmuller ML (2005) Extended glare point velocimetry and sizing for bubbly flows. Exp Fluids 39(2):407–419CrossRefGoogle Scholar
  27. Deschamps GA (1972) Ray techniques in electromagnetics. Proc IEEE 60:1022–1035CrossRefGoogle Scholar
  28. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11(4):1491–1499ADSCrossRefGoogle Scholar
  29. Eremina E, Wriedt T, Eremin Y (2006) Discrete sources method for analysis of a light scattering by an air bubble on resist for immersion lithography. J Quant Spectrosc Radiat Transf 100:131–136ADSCrossRefGoogle Scholar
  30. Farafonov VG, Voshchinnikov NV, Somsikov VV (1996) Light scattering by a core–mantle spheroidal particle. Appl Opt 35(27):5412–5426ADSCrossRefGoogle Scholar
  31. Felsen LB (1984) Geometrical theory of diffraction, evanescent waves, complex rays and Gaussian beams. Geophys J Int 79(1):77–88ADSCrossRefGoogle Scholar
  32. Fiedler-Ferrari N (1983) Espalhamento de Mie na Vizinhanca do angulo critico. PhD thesis, University of São PauloGoogle Scholar
  33. Fiedler-Ferrari N, Nussenzveig HM, Wiscombe WJ (1991) Theory of near-critical-angle scattering from a curved interface. Phys Rev A 43(2):1005–1038ADSCrossRefGoogle Scholar
  34. Fowles GR (1987) Introduction to modern optics. Dover books on physics. Dover Publications, New YorkGoogle Scholar
  35. Goodman JW (1960) Introduction to fourier optic. McGraw-Hill, New YorkGoogle Scholar
  36. Goos F, Hänchen H (1947) Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann Phys 436(7–8):333–346CrossRefGoogle Scholar
  37. Gordon HR, Boynton GC (1998) Radiance–irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies. Appl Opt 37(18):3886–3896ADSCrossRefGoogle Scholar
  38. Gouesbet G, Gréhan G (2011) Generalized Lorenz-Mie theories. Springer, BerlinGoogle Scholar
  39. Gouesbet G, Lock JA (1994) Rigourous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz-Mie theory. Part 1: Off-axis beams. J Opt Soc Am A 11(9):2503–2515ADSCrossRefGoogle Scholar
  40. Gouesbet G, Maheu B, Gréhan G (1988) Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J Opt Soc Am A 5(9):1427–1443ADSMathSciNetCrossRefGoogle Scholar
  41. Grace JR (1973) Shapes and velocities of bubbles rising in infinite liquids. T I Chem Eng Lond 51:116–120Google Scholar
  42. Gréhan G, Onofri F, Girasole T, Gouesbet G, Durst G, Tropea C (1996) Measurement of bubbles by phase doppler technique and trajectory ambiguity. In: Adrian RJ, Durão DFG, Durst F, Heitor MV, Maeda M, Whitelaw JH (eds) Developments in laser techniques and applications to fluid mechanics: Proceedings of the 7th international symposium Lisbon, Portugal, 11–14 July 1994, pp 290–302. SpringerGoogle Scholar
  43. He H, Li W, Zhang X, Xia M, Yang K (2012) Light scattering by a spheroidal bubble with geometrical optics approximation. J Quant Spectrosc Radiat Transf 113(12):1467–1475ADSCrossRefGoogle Scholar
  44. Hergert W, Wriedt T (2012) The Mie theory: basics and applications. Springer series in optical sciences. Springer-VerlagGoogle Scholar
  45. Hovenac EA (1991) Calculation of far-field scattering from nonspherical particles using a geometrical optics approach. Appl Opt 30(33):4739–4746ADSCrossRefGoogle Scholar
  46. Hovenac EA, Lock JA (1992) Assessing the contribution of surface waves and complex rays to far-field scattering by use of the Debye series. J Opt Soc Am A 9(5):781–795ADSCrossRefGoogle Scholar
  47. Jiang K, Han X, Ren KF (2013) Scattering of a Gaussian beam by an elliptical cylinder using the vectorial complex ray model. J Opt Soc Am A 30(8):1548–1556Google Scholar
  48. Johnson BD, Cooke RC (1981) Generation of stabilized microbubbles in seawater. Science 213(4504):209–211ADSCrossRefGoogle Scholar
  49. Jonasz M, Fournier G (2007a) Light scattering by particles in water: theoretical and experimental foundations. Academic Press, New YorkGoogle Scholar
  50. Jonasz M, Fournier GR (2007b) Chapter 2—Optical properties of pure water, seawater, and natural waters. In: Light Scattering by Particles in Water. Academic Press, Amsterdam, pp 33–85Google Scholar
  51. Jonasz M, Fournier GR (2007c) Chapter 4—Measurements of light scattering by particles in water. In: Light scattering by particles in water. Academic Press, New York, pp 145–265Google Scholar
  52. Jörg BG, Susumu S, Martina H (2013) Are Fresnel filtering and the angular Goos-Hänchen shift the same? J Opt 15(1):014009CrossRefGoogle Scholar
  53. Keller JB (1962) Geometrical theory of diffraction. J Opt Soc Am A 52(2):116–130MathSciNetCrossRefGoogle Scholar
  54. Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic Press, New YorkGoogle Scholar
  55. Kingsbury DL, Marston PL (1981) Mie scattering near the critical angle of bubbles in water. J Opt Soc Am A 71(3):358–361ADSCrossRefGoogle Scholar
  56. Kita-Tokarczyk K, Grumelard J, Haefele T, Meier W (2005) Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes. Polymer 46(11):3540–3563CrossRefGoogle Scholar
  57. Kokhanovsky A (2006) Cloud optics. Kokhanovsky, Alexander SpringerGoogle Scholar
  58. Krzysiek M (2009) Particle systems characterization by inversion of critical light scattering patterns. PhD thesis, Aix-Marseille UniversityGoogle Scholar
  59. Lamadie F, Bruel L, Himbert M (2012) Digital holographic measurement of liquid–liquid two-phase flows. Opt Lasers Eng 50(12):1716–1725CrossRefGoogle Scholar
  60. Langley DS, Marston PL (1984) Critical-angle scattering of laser light from bubbles in water: measurements, models, and application to sizing of bubbles. Appl Opt 23(7):1044–1054ADSCrossRefGoogle Scholar
  61. Latham L (2017) Where to find bubbles in nature. Available online at url-
  62. Lin CH, Wang LA (2005) Simulation of air bubble scattering effects in 193 nm immersion interferometric lithography. J Vac Sci Technol B 23(6):2684–2693CrossRefGoogle Scholar
  63. Liping S, Deming R, Yanchen Q, Weijiang Z, Xiaoyong H (2006) Study on dirty bubbles of volumetric scattering function in ship wakes. In: Conference on lasers and electro-optics/quantum electronics and laser science conference and photonic applications systems technologies, Long Beach, California, 2006/05/21 2006. Technical Digest (CD), p CFD6. Optical Society of AmericaGoogle Scholar
  64. Lock JA (1996a) Ray scattering by an arbitrarily oriented spheroid. I. Diffraction and specular reflection. Appl Opt 35(3):500–514ADSCrossRefGoogle Scholar
  65. Lock JA (1996b) Ray scattering by an arbitrarily oriented spheroid. II. Transmission and cross-polarization effects. Appl Opt 35(3):515–531ADSCrossRefGoogle Scholar
  66. Lock JA (2003) Role of the tunneling ray in near-critical-angle scattering by a dielectric sphere. J Opt Soc Am A 20:499–507ADSCrossRefGoogle Scholar
  67. Lock JA (2008) Scattering of an electromagnetic plane wave by a Luneburg lens. III. Finely stratified sphere model. J Opt Soc Am A 25(12):2991–3000ADSMathSciNetCrossRefGoogle Scholar
  68. Lock JA, Adler CL (1997) Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder. J Opt Soc Am A 14(6):1316–1328ADSCrossRefGoogle Scholar
  69. Lotsch HKV (1968) Reflection and refraction of a beam of light at a plane interface. J Opt Soc Am A 58(4):551–561CrossRefGoogle Scholar
  70. Lotsch HKV (1971) Beam displacement at total reflection: the Goos-Hänchen effect. Optick 32:553–569Google Scholar
  71. Macke A, Mishchenko MI (1996) Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles. Appl Opt 35(21):4291–4296ADSCrossRefGoogle Scholar
  72. Marston PL (1979) Critical angle scattering by a bubble: physical-optics approximation and observations. J Opt Soc Am A 69(9):1205–1211ADSCrossRefGoogle Scholar
  73. Marston PL (1992) 1 - Geometrical and catastrophe optics methods in scattering. In: Pierce AD, Thurston RN (eds) Physical acoustics, vol 21. Academic Press, Boston, pp 1–234Google Scholar
  74. Marston PL (1999) light scattering by bubbles in liquids and applications to physical acoustics. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and Sonoluminescence. Springer, pp. 73–86Google Scholar
  75. Marston PL (2015) Surprises and anomalies in acoustical and optical scattering and radiation forces. J Quant Spectrosc Radiat Transf 162:8–17ADSCrossRefGoogle Scholar
  76. Marston PL, Kingsbury DL (1981) Scattering by a bubble in water near the critical angle: interference effects. J Opt Soc Am A 71(2):192–196ADSCrossRefGoogle Scholar
  77. Marston PL, Langley DS, Kingsbury DL (1982) Light scattering by bubbles in liquids: Mie theory, physical-optics approximations, and experiments. Appl Sci Res 38(1):373–383CrossRefGoogle Scholar
  78. Mees L, Gréhan G, Gouesbet G (2001) Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses. Opt Commun 194(1–3):59–65ADSCrossRefGoogle Scholar
  79. Merano M, Aiello A, t’Hooft G, Van Exter M, Eliel E, Woerdman J (2007) Observation of Goos-Hänchen shifts in metallic reflection. Opt Express 15(24):15928–15934Google Scholar
  80. Mie G (1908) Beiträge zur Optik Trüber Medien Speziell Kolloidaler Metallösungen. Ann Phys 330(3):377–445zbMATHCrossRefGoogle Scholar
  81. Minnaert M (1980) The nature of light & colour in the open air. Dover Publications, New YorkGoogle Scholar
  82. Mishchenko MI, Travis LD (1998) Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J Quant Spectrosc Radiat Transf 60(3):309ADSCrossRefGoogle Scholar
  83. Mishchenko MI, Travis LD, Lacis AA (2006) Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University Press, CambridgeGoogle Scholar
  84. Mitri FG (2011) Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere. Opt Lett 36(5):766–768ADSMathSciNetCrossRefGoogle Scholar
  85. Muinonen K, Nousiainen T, Fast P, Lumme K, Peltoniemi JI (1996) Light scattering by Gaussian random particles: ray optics approximation. J Quant Spectrosc Radiat Transf 55(5):577–601ADSCrossRefGoogle Scholar
  86. Nussenzveig HM (1992) Diffraction effects in semiclassical scattering. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  87. Nye JF (1999) Natural focusing and fine structure of light: caustics and wave dislocations. IOP Publishing Ltd, BristolzbMATHGoogle Scholar
  88. Onofri F (1999) Critical angle refractometry for simultaneous measurement of particles in flow: size and relative refractive index. Part Part Syst Char 16(3):119–127CrossRefGoogle Scholar
  89. Onofri F, Gréhan G, Gouesbet G (1995) Electromagnetic scattering from a multilayered sphere located in an arbitrary beam. Appl Opt 34(30):7113–7124ADSCrossRefGoogle Scholar
  90. Onofri F, Blondel D, Gréhan G, Gouesbet G (1996) On the optical diagnosis and sizing of spherical coated and multilayered particles with phase-doppler anemometry. Part Part Syst Char 13(2):104–111CrossRefGoogle Scholar
  91. Onofri F, Lenoble A, Bultynck H, Guéring P-H (2004) High-resolution laser diffractometry for the on-line sizing of small transparent fibres. Opt Commun 234(1–6):183–191ADSCrossRefGoogle Scholar
  92. Onofri F, Krysiek M, Mroczka J (2007a) Critical angle refractometry and sizing of bubble clouds. Opt Lett 32(14):2070–2072ADSCrossRefGoogle Scholar
  93. Onofri F, Lenoble A, Radev S, Guering P-H (2007b) High resolution monitoring of an unsteady glass fibre drawing process. Exp Fluids 42(4):601–610CrossRefGoogle Scholar
  94. Onofri FA, Krzysiek M, Mroczka J, Ren K-F, Radev S, Bonnet J-P (2009) Optical characterization of bubbly flows with a near-critical-angle scattering technique. Exp Fluids 47(4–5):721–732CrossRefGoogle Scholar
  95. Onofri FRA, Krzysiek MA, Barbosa S, Messager V, Ren K-F, Mroczka J (2011) Near-critical-angle scattering for the characterization of clouds of bubbles: particular effects. Appl Opt 50(30):5759–5769ADSCrossRefGoogle Scholar
  96. Onofri FRA, Radev S, Sentis M, Barbosa S (2012) Physical-optics approximation of near-critical-angle scattering by spheroidal bubbles. Opt Lett 37(22):4780–4782ADSCrossRefGoogle Scholar
  97. Onofri FRA, Ren KF, Sentis M, Gaubert Q, Pelcé C (2015) Experimental validation of the vectorial complex ray model on the inter-caustics scattering of oblate droplets. Opt Express 23(12):15768–15773ADSCrossRefGoogle Scholar
  98. Prosperetti A, Tryggvason G (2007) Computational methods for multiphase flow. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  99. Puri A, Birman JL (1986) Goos-Hänchen beam shift at total internal reflection with application to spatially dispersive media. J Opt Soc Am A 3(4):543–549ADSCrossRefGoogle Scholar
  100. Reinhard L, Martin B, Rumiana D, Thomas F, Jan K, Xinzhao Z (2005) Droplets, bubbles, and vesicles at chemically structured surfaces. J Phys Condens Mat 17(9):S537CrossRefGoogle Scholar
  101. Ren KF, Gréhan G, Gouesbet G (1997) Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory: formulation and numerical results. J Opt Soc Am A 14(11):3014–3025ADSMathSciNetCrossRefGoogle Scholar
  102. Ren KF, Onofri F, Rozé C, Girasole T (2011) Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle. Opt Lett 36(3):370–372ADSCrossRefGoogle Scholar
  103. Renard RH (1964) Total reflection: a new evaluation of the Goos-Hänchen shift. J Opt Soc Am A 54(10):1190–1196CrossRefGoogle Scholar
  104. Salkin L, Schmit A, Panizza P, Courbin L (2016) Generating soap bubbles by blowing on soap films. Phys Rev Lett 116(7):077801ADSCrossRefGoogle Scholar
  105. Sentis M, Onofri FRA, Dhez O, Laurent J-Y, Chauchard F (2015) Organic photo sensors for multi-angle light scattering characterization of particle systems. Opt Express 23(21):27536–27541ADSCrossRefGoogle Scholar
  106. Sentis MPL, Onofri FRA, Méès L, Radev S (2016) Scattering of light by large bubbles: coupling of geometrical and physical optics approximations. J Quant Spectrosc Radiat Transf 170:8–18ADSCrossRefGoogle Scholar
  107. Sentis MPL, Bruel L, Charton S, Onofri FRA, Lamadie F (2017) Digital in-line holography for the characterization of flowing particles in astigmatic optical systems. Opt Lasers Eng 88:184–196CrossRefGoogle Scholar
  108. Sharma SK, Somerford DJ (2006) Light scattering by optically soft particles: theory and applications. Praxis Publishing Ltd, ChichesterGoogle Scholar
  109. Shelby JE (2005) Introduction to glass science and technology. Royal Society of Chemistry, CambridgeGoogle Scholar
  110. Silvestre CIC, Santos JLM, Lima JLFC, Zagatto EAG (2009) Liquid–liquid extraction in flow analysis: a critical review. Anal Chim Acta 652(1–2):54–65CrossRefGoogle Scholar
  111. Stavroudis ON (2006) The mathematics of geometrical and physical optics. Wiler-VCH Verlag & Co. KGaA, weinheimzbMATHCrossRefGoogle Scholar
  112. Stockschläder P, Kreismann J, Hentschel M (2014) Curvature dependence of semiclassical corrections to ray optics: how Goos-Hänchen shift and Fresnel filtering deviate from the planar case result. Europhys Lett 107(6):64001ADSCrossRefGoogle Scholar
  113. Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New YorkzbMATHGoogle Scholar
  114. Tadros TF (2013) Emulsion formation, stability, and rheology. In: Emulsion formation and stability. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–75Google Scholar
  115. Tatsuya K, Yukihiro A, Masanobu M (2002) Size measurements of droplets and bubbles by advanced interferometric laser imaging technique. Meas Sci Technol 13(3):308CrossRefGoogle Scholar
  116. Tian L, Loomis N, Domínguez-Caballero JA, Barbastathis G (2010) Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography. Appl Opt 49(9):1549–1554ADSCrossRefGoogle Scholar
  117. Tran NH, Dutriaux L, Balcou P, Le Floch A, Bretenaker F (1995) Angular Goos-Hänchen effect in curved dielectric microstructures. Opt Lett 20(11):1233–1235ADSCrossRefGoogle Scholar
  118. Trefil JS (1984) A scientist at the seashore. Scribner, New YorkGoogle Scholar
  119. Ushikubo FY, Furukawa T, Nakagawa R, Enari M, Makino Y, Kawagoe Y, Shiina T, Oshita S (2010) Evidence of the existence and the stability of nano-bubbles in water. Colloids Surf A 361(1–3):31–37Google Scholar
  120. van de Hulst HC (1957) Light scattering by small particles. Dover Publications, New YorkGoogle Scholar
  121. van Sint Annaland M, Deen NG, Kuipers JAM (2005) Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem Eng Sci 60(11):2999–3011CrossRefGoogle Scholar
  122. Vera MU, Saint-Jalmes A, Durian DJ (2001) Scattering optics of foam. Appl Opt 40(24):4210–4214ADSCrossRefGoogle Scholar
  123. Vetrano MR, van Beeck JPAJ, Riethmuller ML (2004) Global rainbow thermometry: improvements in the data inversion algorithm and validation technique in liquid-liquid suspension. Appl Opt 43(18):3600–3607ADSCrossRefGoogle Scholar
  124. Wiscombe WJ (1980) Improved Mie scattering algorithms. Appl Opt 19(9):1505–1509ADSCrossRefGoogle Scholar
  125. Woolf DK (2001) Bubbles A2. In: Steele JH (ed) Encyclopedia of ocean sciences. Academic Press, London, pp 352–357CrossRefGoogle Scholar
  126. Woolf LD (2010) Multiple smatterings of insight: 10 years of interaction with Craig Bohren. NANOP 4(1), 041595–041597Google Scholar
  127. Wriedt T (2007) Review of the null-field method with discrete sources. J Quant Spectrosc Radiat Transfer 106:535ADSCrossRefGoogle Scholar
  128. Wriedt T (2017) Light Scattering programs (ScattPort). Available online at url-
  129. Wu ZS, Wang YP (1991) Electromagnetic scattering for multilayered sphere: recursive algorithms. Radio Sci 26(6):1393–1401ADSCrossRefGoogle Scholar
  130. Wu L, Yang H, Li X, Yang B, Li G (2007) Scattering by large bubbles: comparisons between geometrical-optics theory and Debye series. J Quant Spectrosc Radiat Transf 108(1):54–64ADSCrossRefGoogle Scholar
  131. Xu R (2001) Particle characterization: light scattering methods. Kluwer Academic Publishers, DordrechtGoogle Scholar
  132. Xu F, Ren KF, Cai X (2006a) Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle. Appl Opt 45(20):4990–4999ADSCrossRefGoogle Scholar
  133. Xu F, Ren KF, Cai X, Shen J (2006b) Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence. Appl Opt 45(20):5000–5009ADSCrossRefGoogle Scholar
  134. Xu F, Lock JA, Tropea C (2010) Debye series for light scattering by a spheroid. J Opt Soc Am A 27(4):671–686ADSCrossRefGoogle Scholar
  135. Yan B, Chen B, Stamnes K (2002) Role of oceanic air bubbles in atmospheric correction of ocean color imagery. Appl Opt 41(12):2202–2212ADSCrossRefGoogle Scholar
  136. Yang P, Liou KN (2009) An “exact” geometric-optics approach for computing the optical properties of large absorbing particles. J Quant Spectrosc Radiat Transf 110(13):1162–1177ADSCrossRefGoogle Scholar
  137. Yang M, Wu Y, Sheng X, Ren K-F (2015) Comparison of scattering diagrams of large non-spherical particles calculated by VCRM and MLFMA. J Quant Spectrosc Radiat Transf 163:143–153Google Scholar
  138. Yu H, Shen J, Wei Y (2008) Geometrical optics approximation of light scattering by large air bubbles. Particuology 6(5):340–346CrossRefGoogle Scholar
  139. Yu H, Xu F, Tropea C (2013) Simulation of optical caustics associated with the secondary rainbow of oblate droplets. Opt Lett 38(21):4469–4472ADSCrossRefGoogle Scholar
  140. Yuan Y, Ren K, Rozé C (2016) Fraunhofer diffraction of irregular apertures by Heisenberg uncertainty Monte Carlo model. Particuology 24:151–158CrossRefGoogle Scholar
  141. Yurkin MA, Kahnert M (2013) Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method. J Quant Spectrosc Radiat Transf 123:176–183ADSCrossRefGoogle Scholar
  142. Zhang X, Lewis M, Johnson B (1998) Influence of bubbles on scattering of light in the ocean. Appl Opt 37(27):6525–6536ADSCrossRefGoogle Scholar
  143. Zhang S, Wang KW, He F, Zhou B (2015) Simulation and analysis of light scattering by air bubble in optical glass. Adv Mat Res 1096:98–102Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Fabrice R. A. Onofri
    • 1
    Email author
  • Matthias P. L. Sentis
    • 2
  1. 1.IUSTI (UMR 7343, Aix-Marseille Université)National Center for Scientific Research (CNRS)Marseille cedex 13France
  2. 2.DEN/DMRC/SA2I/LGCIAtomic Energy and Alternative Energies Commission (CEA)Bagnols-sur-CèzeFrance

Personalised recommendations