Advertisement

Advances in Spectro-Polarimetric Light-Scattering by Particulate Media

  • Romain CeolatoEmail author
  • Nicolas Riviere
Chapter
Part of the Springer Series in Light Scattering book series (SSLS)

Abstract

Spectro-polarimetric light-scattering, or merging spectral and polarimetric light-scattering information, is a growing interest in a wide range of scientific fields. Recently, it has been demonstrated how spectral polarimetric light-scattering could be employed to probe microphysical properties of particulate media, for instance mean particle size or relative complex refractive index. Fundamental advantages of merging spectral and polarimetric information for light-scattering are to address distinct scattering regimes, probe systems of particles at different scales, and extract useful information about a particulate media of interest. The challenge of simultaneous retrieval of microphysical properties of particulate media, without a priori knowledge or use of simplistic assumptions, is addressed throughout this review.

Notes

Acknowledgements

The authors would like to thank Matthew Berg for helpful comments regarding radiative transfer equation and for many debates in the field of light-scattering. We are also grateful to Michael I. Mishchenko, Gordon Videen, Ludmilla Kolokolova, and Alex J. Yuffa for fruitful discussions regarding spectral polarimetric light-scattering.

References

  1. Alfano RR, Shapiro SL (1970a) Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys Rev Lett 24:584–587.  https://doi.org/10.1103/PhysRevLett.24.584 ADSCrossRefGoogle Scholar
  2. Alfano RR, Shapiro SL (1970b) Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys Rev Lett 24:592ADSCrossRefGoogle Scholar
  3. Althausen D, Müller D, Ansmann A, Wandinger U, Hube H, Clauder E, Zörner S (2000) Scanning 6-wavelength 11-channel aerosol lidar. J Atmos Oceanic Technol 17:1469–1482. https://doi.org/10.1175/1520-0426(2000)017<1469:SWCAL>2.0.CO;2 ADSCrossRefGoogle Scholar
  4. Ambartsumian VA (1943) Dokl Akad Nauk SSSR 38:257Google Scholar
  5. Ambartsumian VA (1947) Dokl Akad Nauk SSSR 7:199Google Scholar
  6. Ambartsumian VA (1957) Theoretical astrophysics. Translated from the Russian (“Teoreticheskaya astrofizika”, Moscow, 1952) by J.B. Sykes, New York: Pergamon Press, 1958, Theoretische Astrophysik - Berlin: Deutscher Verlag der WissenschaftenGoogle Scholar
  7. Anastasiadou M, Martino AD, Clement D, Liège F, Laude-Boulesteix B, Quang N, Dreyfuss J, Huynh B, Nazac A, Schwartz L, Cohen H (2008) Polarimetric imaging for the diagnosis of cervical cancer. Phys Status Solidi C 5:1423–1426.  https://doi.org/10.1002/pssc.200777805 ADSCrossRefGoogle Scholar
  8. Ångström A (1929) On the atmospheric transmission of sun radiation and on dust in the air. Geogr Ann 11:156–166.  https://doi.org/10.2307/519399 Google Scholar
  9. Ansmann A, Mattis I, Müller D, Wandinger U, Radlach M, Althausen D, Damoah R (2005) Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar. J Geophys Res 110:2.  https://doi.org/10.1029/2004JD005000 CrossRefGoogle Scholar
  10. Arago DFJ (1842) Sur les vulcanes dans la Lune, Ed. Annuaire de longitudes, Paris 1929Google Scholar
  11. Arago DFJ (1858) Oeuvres Complètes de François Arago, Ed. Gide and J. Baudry, ParisGoogle Scholar
  12. Asano S, Yamamoto G (1976) Light scattering by a spheroidal particle: errata. Appl Opt 15(9):2028.  https://doi.org/10.1364/AO.15.002028 ADSCrossRefGoogle Scholar
  13. Aziz T, Firdous S, Khan MA, Ikram M, Rahman TU (2013) Polarimetric study of leukemia human peripheral blood smears in 400–800 nm spectral range. Optik – Int J Light Electron Opt 124(17):2936–2942.  https://doi.org/10.1016/j.ijleo.2012.08.091 CrossRefGoogle Scholar
  14. Backman V, Harrison GR, Gurjar R, Badizadegan K, Itzkan I (1999) Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. IEEE J Sel Top Quantum Electron 5(4):1019–1026.  https://doi.org/10.1109/2944.796325 CrossRefGoogle Scholar
  15. Banerjee P, Soni J, Purwar H, Ghosh N, Sengupta TK (2013) Probing the fractal pattern and organization of bacillus thuringiensis bacteria colonies growing under different conditions using quantitative spectral light scattering polarimetry. J Biomed Opt 18(3):035003.  https://doi.org/10.1117/1.JBO.18.3.035003 CrossRefGoogle Scholar
  16. Barabashev N (1926) Polarimetrische Beobachtungen an der Mondoberfläche und am Gesteinen. Astron Nachr 229:14–26ADSGoogle Scholar
  17. Barreda AI, Sanz JM, González F (2015a) Using linear polarization for sensing and sizing dielectric nanoparticles. Opt Express 23(7):9157–9166.  https://doi.org/10.1364/OE.23.009157 ADSCrossRefGoogle Scholar
  18. Barreda AI, Sanz JM, Alcaraz de la Osaa R, Saiza JM, Morenoa F, Gonzáleza F, Videen G (2015b) Using linear polarization to monitor nanoparticle purity. J Quant Spectrosc Radiat Transfer 162:190–196.  https://doi.org/10.1016/j.jqsrt.2015.03.005 ADSCrossRefGoogle Scholar
  19. Bendoula R, Gobrecht A, Moulin B, Roger JM, Bellon Maurel V (2015) Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized light spectroscopy. Appl Spectrosc 69(1):95–102.  https://doi.org/10.1366/14-07539 ADSCrossRefGoogle Scholar
  20. Berdyugina SV, Kuhn JR, Harrington DM, Šantl-Temkiv T, Messersmith EJ (2016) Remote sensing of life: polarimetric signatures of photosynthetic pigments as sensitive biomarkers. Int J Astrobiol 15:45–56.  https://doi.org/10.1017/S1473550415000129 CrossRefGoogle Scholar
  21. Berg MJ (2012) Power-law patterns in electromagnetic scattering: a selected review and recent progress. J Quant Spectrosc Radiat 113(18):2292–2309.  https://doi.org/10.1016/j.jqsrt.2012.05.015 ADSCrossRefGoogle Scholar
  22. Bergstrom RW, Pilewskie P, Russell PB, Redemann J, Bond TC, Quinn PK, Sierau B (2007) Spectral absorption properties of atmospheric aerosols. Atmos Chem Phys 7:5937–5943.  https://doi.org/10.5194/acp-7-5937-2007 ADSCrossRefGoogle Scholar
  23. Boas D, Pitris C, Ramanujam N (2011) Handbook of biomedical, optics. CRC Press, Boca RatonCrossRefGoogle Scholar
  24. Boesche E, Stammes P, Ruhtz T, Preusker R, Fischer J (2006) Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements. Appl Opt 45(34):8790–8805.  https://doi.org/10.1364/AO.45.008790 ADSCrossRefGoogle Scholar
  25. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York. ISBN 978-0-471-29340-8CrossRefGoogle Scholar
  26. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res Atmos 118(11):5380–5552.  https://doi.org/10.1002/jgrd.50171 ADSCrossRefGoogle Scholar
  27. Bordier C, Andraud C, Charron E, Lafait J, Anastasiadou M, Martino AD (2008) Illustration of a bimodal system in Intralipid-20% by polarized light scattering: experiments and modeling. Appl Phys A 94(2):347–355.  https://doi.org/10.1007/s00339-008-4803-9 ADSCrossRefGoogle Scholar
  28. Bowell E, Dollfus A, Geake JE (1972) Polarimetric properties of the lunar surface and its interpretation. In: Proceeding Third Lunar Science Conference, vol 3. MIT Press, Cambridge, MAGoogle Scholar
  29. Box MA, McKellar BHJ (1978) Analytic inversion of multispectral extinction data in the anomalous diffraction approximation. Opt Lett 3(3):91–93.  https://doi.org/10.1364/OL.3.000091 ADSCrossRefGoogle Scholar
  30. Breon FM, Goloub P (1998) Cloud droplet effective radius from spaceborne polarization measurements. Geophys Res Lett 25(11):1879–1882.  https://doi.org/10.1029/98GL01221 ADSCrossRefGoogle Scholar
  31. Brunsting A, Mullaney P (1974) Differential light scattering from spherical mammalian cells. Biophys J 14(6):439–453.  https://doi.org/10.1016/S0006-3495(74)85925-4 CrossRefGoogle Scholar
  32. Bureau (1946) Altimétrie des nuages par impulsions lumineuses, La météorologie Google Scholar
  33. Burns WW (1975) Airborne, remote sensing system that uses reflected polarized skylight to detect the presence of oil discharges into water. IEEE Oceans 7:688–692.  https://doi.org/10.1109/OCEANS.1975.1154134 Google Scholar
  34. Ceolato R, Riviere N (2016) Spectral polarimetric light-scattering by particulate media: 1. Theory of spectral Vector Radiative Transfer. J Quant Spectrosc Radiat 178:117–123.  https://doi.org/10.1016/j.jqsrt.2015.12.026 ADSCrossRefGoogle Scholar
  35. Ceolato R, Riviere N, Hespel L (2012) Reflectances from a supercontinuum laser-based instrument: hyperspectral, polarimetric and angular measurements. Opt Express 20:29413–29425ADSCrossRefGoogle Scholar
  36. Ceolato R, Berg MJ, Riviere N (2013) Spectral and angular light-scattering from silica fractal aggregates. J Quant Spectrosc Radiat Transfer 131:160–165.  https://doi.org/10.1016/j.jqsrt.2013.01.007 ADSCrossRefGoogle Scholar
  37. Ceolato R, Golzio M, Riou C, Orlik X, Riviere N (2015) Spectral degree of linear polarization of light from healthy skin and melanoma. Opt Express 23(10):13605–13612.  https://doi.org/10.1364/OE.23.013605 ADSCrossRefGoogle Scholar
  38. Chandrasekhar S (1950) Radiative transfer. Oxford University Press, LondonzbMATHGoogle Scholar
  39. Chen Zh, Sheng P, Weitz DA, Lindsay HM, Lin MY, Meakin P (1988) Optical properties of aggregate clusters. Phys Rev B 37:5232–5235.  https://doi.org/10.1103/PhysRevB.37.5232 ADSCrossRefGoogle Scholar
  40. Chernova G, Kiselev N, Jockers K (1993) Polarimetric characteristic of dust particles as observed in 13 comets: comparisons with asteroids. Icarus 103:144–158.  https://doi.org/10.1006/icar.1993.1063 ADSCrossRefGoogle Scholar
  41. Chwolson OD (1889) Grundzüge einer mathematischen theorie der inneren diffusion des licht. Bull Acad Imp Sci St. Petersburg 33:221–256Google Scholar
  42. Coen S, Chau AHL, Leonhardt R, Harvey JD, Knight JC, Wadsworth WJ, St P, Russell J (2002) Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. J Opt Soc Am B 19:753–764ADSCrossRefGoogle Scholar
  43. Coffeen DL (1964) Wavelength dependence of polarization. IV. Volcanic cinders and particles. Astron J 70:403ADSCrossRefGoogle Scholar
  44. Corlu A, Choe R, Durduran T, Lee K, Schweiger M, Arridge SR, Hillman EMC, Yodh AG (2005) Diffuse optical tomography with spectral constraints and wavelength optimization. Appl Opt 44(11):2082–2093.  https://doi.org/10.1364/AO.44.002082 ADSCrossRefGoogle Scholar
  45. Corlu A, Choe R, Durduran T, Rosen MA, Schweiger M, Arridge SR, Schnall MD, Yodh AG (2007) Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans. Opt Express 15(11):6696–6716.  https://doi.org/10.4364/OE.15.006696 ADSCrossRefGoogle Scholar
  46. Cornu A (1890) Sur l’application du photopolarimètre à la météorologie, Association française pour l’avancement des sciences: conférences de Paris, compte-rendu de la 19e session, Séance du 11 août 1890Google Scholar
  47. Couch RH, Rowland CW, Ellis KS, Blythe MP, Regan CR, Koch MR, Antill CW, Kitchen WL, Cox JW, DeLorme JF, Crockett SK, Remus RW (1991) Lidar In-Space Technology Experiment (LITE): NASA’s first in-space lidar system for atmospheric research. Optical Engineering 30(1):88–95 ISSN 0091-3286ADSCrossRefGoogle Scholar
  48. Coulson KL, Dave JV, Sekera Z (1960) Tables related to radiation emerging from a planetary atmosphere with Rayleigh scattering. University of California press, BerkeleyGoogle Scholar
  49. Crovisier J, Leech K, Bockelée-Morvan D, Brooke TY, Hanner MS, Altieri B, Keller HU, Lellouch E (1997) The spectrum of Comet Hale-Bopp (C/1995 O1) observed with the Infrared Space Observatory at 2.9 AU from the Sun. Science 275:1904–1907ADSCrossRefGoogle Scholar
  50. Curcio JA, Knestrick GL (1958) Correlation of atmospheric transmission with backscattering. J Opt Soc Am 48(10):686–689.  https://doi.org/10.1364/JOSA.48.000686 ADSCrossRefGoogle Scholar
  51. D’Abzac FX, Kervella M, Hespel L, Dartigalongue T (2012) Experimental and numerical analysis of ballistic and scattered light using femtosecond optical Kerr gating: a way for the characterization of strongly scattering media. Opt Express 20(9):9604–9615ADSCrossRefGoogle Scholar
  52. Dehghani H, Pogue BW, Poplack SP, Paulsen KD (2003) Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results. Appl Opt 42(1):135–145.  https://doi.org/10.1364/AO.42.000135 ADSCrossRefGoogle Scholar
  53. Deirmendjian D (1964) Scattering and Polarization Properties of Water Clouds and Hazes in the Visible and Infrared. Appl Opt 3(2):187–196.  https://doi.org/10.1364/AO.3.000187 ADSCrossRefGoogle Scholar
  54. Deirmendjian D (1980) A survey of light-scattering techniques used in the remote monitoring of atmospheric aerosols. Rev Geophys Space Phys 18(2):341–360.  https://doi.org/10.1029/RG018i002p00341 ADSCrossRefGoogle Scholar
  55. Del Guasta M, Morandi M, Stefanutti L, Stein B, Wolf JP (1994) Derivation of Mount Pinatubo stratospheric aerosol mean size distribution by means of a multiwavelength lidar. Appl Opt 33(24):5690–5697.  https://doi.org/10.1364/AO.33.005690 ADSCrossRefGoogle Scholar
  56. Deschamps PY, Breon FM, Leroy M, Podaire A, Bricaud A, Buriez JC, Seze G (2002) The POLDER mission: instrument characteristics and scientific objectives. IEEE Trans Geosci Remote Sens 32(3):598–615.  https://doi.org/10.1109/36.297978 ADSCrossRefGoogle Scholar
  57. Deuzé JL, Herman M, Santer R (1989) Fourier series expansion of the transfer equation in the atmosphere-ocean system. J Quant Spectrosc Radiat Transfer 41(6):483–494ADSCrossRefGoogle Scholar
  58. Dial KD, Hiemstra S, Thompson JE (2010) Simultaneous measurement of optical scattering and extinction on dispersed aerosol samples. Anal Chem 82(19):7885–7896CrossRefGoogle Scholar
  59. Diner DJ, Xu F, Garay MJ, Martonchik JV, Rheingans BE, Geier S, Davis A, Hancock BR, Jovanovic VM, Bull MA, Capraro K, Chipman RA, McClain SC (2013) The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol and cloud remote sensing. Atmos Meas Tech 6(2007–2025):2013.  https://doi.org/10.5194/amt-6-2007-2013 Google Scholar
  60. Ding H, Lu JQ, Brock RS, McConnell TJ, Ojeda JF, Jacobs KM, Hu XH (2007) Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm. J Biomed Opt 12(3):034032.  https://doi.org/10.1117/1.2749730 CrossRefGoogle Scholar
  61. Doicu A, Wriedt T (1999) Calculation of the T-Matrix in the null-field method with discrete sources. J Opt Soc Am A 16(10):2539–2544.  https://doi.org/10.1364/JOSAA.16.002539 ADSCrossRefGoogle Scholar
  62. Dollfus A (1957) Étude des planètes par la polarisation de la lumière. Suppléments aux Annales d’Astrophysique 4:3–114ADSGoogle Scholar
  63. Dollfus A, Bowell E (1971) Polarimetric properties of the lunar surface and its interpretation. Part. I. Telescopic Obs Astron Astrophys 10:29–53ADSGoogle Scholar
  64. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11(4):1491–1499.  https://doi.org/10.1364/JOSAA.11.001491 ADSCrossRefGoogle Scholar
  65. Dreher AW, Reiter K, Weinreb RN (1992) Spatially resolved birefringence of the retinal never fiber layer assessed with a retinal laser ellipsometer. Appl Opt 31(19):3730–3735.  https://doi.org/10.1364/AO.31.003730 ADSCrossRefGoogle Scholar
  66. Dubovik O, Sinyuk A, Lapyonok T, Holben BN, Mishchenko M, Yang P, Eck TF, Volten H, Muñoz O, Veihelmann B, van der Zande WJ, Léon JF, Sorokin M, Slutsker I (2006) The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J Geophys Res 111(D11):D11208.  https://doi.org/10.1029/2005JD006619 ADSCrossRefGoogle Scholar
  67. Dudley J, Genty G, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78:1135–1184ADSCrossRefGoogle Scholar
  68. Eiden R (1966) The elliptical polarization of light scattered by a volume of atmospheric air. Appl Opt 5(4):569–575.  https://doi.org/10.1364/AO.5.000569 ADSCrossRefGoogle Scholar
  69. Ejeta C, Boehnhardt H, Bagnulo S, Tozzi GP (2012) Spectro-polarimetry of the bright side of Saturn’s moon. Astron Astrophys 537:A23.  https://doi.org/10.1051/0004-6361/201117870 ADSCrossRefGoogle Scholar
  70. Elias M, Cotte P (2008) Multispectral camera and radiative transfer equation used to depict Leonardo’s sfumato in Mona Lisa. Appl Opt 47(12):2146–2154.  https://doi.org/10.1364/AO.47.002146 ADSCrossRefGoogle Scholar
  71. Evans KF, Stephen GL (1991) A new polarized atmospheric radiative transfer model. J Quant Spectrosc Radiat Transfer 46(5):413–423.  https://doi.org/10.1016/0022-4073(91)90043-P ADSCrossRefGoogle Scholar
  72. Farhoud M (1999) Scattered light from beach sand and its dependence on sand properties. Indian J Pure Appl Phys 37(10):782–786 ISSN:0975-1041Google Scholar
  73. Feingold G, Grund CJ (1994) Feasibility of using multiwavelength lidar measurements to measure cloud condensation nuclei. J Atmos Oceanic Technol 11:1543–1558. https://doi.org/10.1175/1520-0426(1994)011<1543:FOUMLM>2.0.CO;2 ADSCrossRefGoogle Scholar
  74. Fesenkov VG (1966) On a polarization method to study twilight phenomena. Soviet Astron 43:198Google Scholar
  75. Foitzik L (1965) The spectral extinction of the atmospheric aerosol by Mie particles with different Gaussian distributions, Gerlands Beitr. Zur Geophys 74:198–206Google Scholar
  76. Freudenthaler V, Homburg F, Jager H (1996) Optical parameters of contrails from lidar measurements: linear depolarization. Geophys Res Lett 23:3715–3718.  https://doi.org/10.1029/96GL03646 ADSCrossRefGoogle Scholar
  77. Freudenthaler V, Esselborn M, Wiegner M, Heese B, Tesche M, Ansmann A, Müller S, Althausen D, Wirth M, Fix A, Ehret G, Knippertz P, Toledano C, Gasteiger J, Garhammer M, Seefeldner M (2009) Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B 61B(1):165–179.  https://doi.org/10.1111/j.1600-0889.2008.00396.x ADSCrossRefGoogle Scholar
  78. Ghosh N, Wood MFG, Vitkin IA (2009) Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry. J Appl Phys 105:102023.  https://doi.org/10.1063/1.3116129 ADSCrossRefGoogle Scholar
  79. Ghosh N, Wood MFG, Vitkin IA (2010) Polarized light assessment of complex turbid media such as biological tissues using mueller matrix decomposition. In: Tuchin VV (ed) Handbook of photonics for biomedical science, Chapter 9. CRC Press, Taylor & Francis Group, London, pp 253–282CrossRefGoogle Scholar
  80. Ghosh S, Soni J, Purwar H, Jagtap J, Pradhan A, Ghosh N, Panigrahi PK (2011) Differing self-similarity in light scattering spectra: a potential tool for pre-cancer detection. Opt Express 19(20):19717–19730.  https://doi.org/10.1364/OE.19.019717 ADSCrossRefGoogle Scholar
  81. Giakos GC (2006) Multifusion multispectral lightwave polarimetric detection principles and systems. IEEE Trans Instrum Meas 55(6):1904–1912.  https://doi.org/10.1109/TIM.2006.884387 CrossRefGoogle Scholar
  82. Gobbi GP, Barnaba F, Giorgi R, Santacasa A (2000) Altitude–resolved properties of a Saharan dust event over the Mediterranean. Atmos Environ 34:5119–5127ADSCrossRefGoogle Scholar
  83. Goldstein DH, Chenault DB (2002) Spectropolarimetric reflectometer. Opt Eng 41(05):1013–1020.  https://doi.org/10.1117/1.1467933 ADSCrossRefGoogle Scholar
  84. Goloub P, Deuze JL, Herman M, Fouquart Y (1994) Analysis of the POLDER airborne polarization measurements performed over cloud covers. IEEE Trans Geosci Remote Sens 32:78–87.  https://doi.org/10.1109/36.285191 ADSCrossRefGoogle Scholar
  85. Gouesbet G, Gréhan G (2011) Generalized Lorenz-Mie theories. Springer Science & Business Media, Berlin. ISBN ISBN 364217194X, 9783642171949Google Scholar
  86. Gramm GW, Blifford IH Jr, Gillette DA, Russel PB (1974a) Complex index of refraction of airborne soil particles. J Appl Meteorol 13:459–471. https://doi.org/10.1175/1520-0450(1974)013<0459:CIOROA>2.0.CO;2 CrossRefGoogle Scholar
  87. Gramm GW, Blifford IH, Gillette DA, Russell PB (1974b) Complex index of refraction of airborne soil particles. J Appl Meteorol 6282:459–471. https://doi.org/10.1175/1520-0450(1974)013<0459:CIOROA>2.0.CO;2 CrossRefGoogle Scholar
  88. Grassl H (1971) Determination of aerosol size distributions from spectral attenuation measurements. Appl Opt 10(11):2534–2538.  https://doi.org/10.1364/AO.10.002534 ADSCrossRefGoogle Scholar
  89. Gross CT, Salamon H, Hunt AJ, Macey RI, Orme F, Quintanilha AT (1991) Hemoglobin polymerization in sickle cells studied by circular polarized light scattering. Biochem Biophys Acta 1079(2):152–160.  https://doi.org/10.1016/0167-4838(91)90120-O Google Scholar
  90. Groß S, Tesche M, Freudenthaler V, Toledano C, Wiegner M, Ansmann A, Althausen D, Seefeldner M (2011) Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2. Tellus B 63B(4):706–724.  https://doi.org/10.1111/j.1600-0889.2011.00556.x ADSCrossRefGoogle Scholar
  91. Gurjar RS, Backman V, Perelman LT, Georgakoudi I, Badizadegan K, Itzkan I, Dasari RR, Feld MS (2001) Imaging human epithelial properties with polarized light scattering spectroscopy. Nat Med 7(11):1245–1248.  https://doi.org/10.1038/nm1101-1245 CrossRefGoogle Scholar
  92. Gustafson Bo ÅS, Kolokolova L (1999) A systematic study of light scattering by aggregate particles using the microwave analog technique: Angular and wavelength dependence of intensity and polarization. J Geophys Res 104(D24):31711–31720.  https://doi.org/10.1029/1999JD900327 ADSCrossRefGoogle Scholar
  93. Hadamard J (1902) Sur les problèmes aux dérivées partielles et leur signification physique. Princeton Univ Bull 13:49–52Google Scholar
  94. Hage J, Greenberg J, Wang R (1991) Scattering from arbitrarily shaped particles: theory and experiment. Appl Opt 30(9):1141–1152.  https://doi.org/10.1364/AO.30.001141 ADSCrossRefGoogle Scholar
  95. Hakala T, Suomalainen J, Kaasalainen S, Chen Y (2012) Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt Express 20:7119–7127ADSCrossRefGoogle Scholar
  96. Hariharan TA, Sekera Z (1966) A photoelectric skylight polarimeter. Appl Opt 5(9):1415–1417.  https://doi.org/10.1364/AO.5.001415 ADSCrossRefGoogle Scholar
  97. Hastings FD, Schneider JB (1995) A Monte-Carlo FDTD technique for rough surface scattering. IEEE Trans Antennas Propag 43(11):1183–1191ADSCrossRefGoogle Scholar
  98. Hayashida S, Kobayashi A, Iswasaka Y (1984) Lidar measurements of stratospheric aerosol content and depolarization ratios after the eruption of El Chichon volcano: measurements at Nagoya. Japan. Geofisica Int 23(2):277–288 ISSN:0016-7169Google Scholar
  99. Heintzenberg J, Müller H, Quenzel H, Thomalla E (1981) Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm. Appl Opt 20(8):1308–1315.  https://doi.org/10.1364/AO.20.001308 ADSCrossRefGoogle Scholar
  100. Hespel L, Delfour A (2000) Mie light-scattering granulometer with adaptive numerical filtering. I. Theory Appl Opt 39:6897–6917ADSCrossRefGoogle Scholar
  101. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment 66(1):1–16.  https://doi.org/10.1016/S0034-4257(98)00031-5 ISSN:0034-4257ADSCrossRefGoogle Scholar
  102. Holland AC, Gagne G (1970) The scattering of polarized light by polydisperse systems of irregular particles. Appl Opt 9(5):1113–1121.  https://doi.org/10.1364/AO.9.001113 ADSCrossRefGoogle Scholar
  103. Hollstein A, Ruhtz T, Fischer J, Preusker R (2009) Optimization of system parameters for a complete multispectral polarimeter. Appl Opt 48(24):4767–4773.  https://doi.org/10.1364/AO.48.004767 ADSCrossRefGoogle Scholar
  104. Hovenier JW (1971) Multiple scattering of polarized light in planetary atmospheres. Astron Astrophys 13:7ADSGoogle Scholar
  105. Huckaby JL, Ray AK, Das B (1994) Determination of size, refractive index, and dispersion of single droplets from wavelength-dependent scattering spectra. Appl Opt 33(30):7112–7125.  https://doi.org/10.1364/AO.33.007112 ADSCrossRefGoogle Scholar
  106. Ientilucci E, Gartley M (2009) Impact of BRDF on physics-based modeling as applied to target detection in hyperspectral imagery. In: Proceeding SPIE 7334, 73340T1Google Scholar
  107. Ishimaru A, Lesselier D, Yeh C (1984) Multiple scattering calculations for nonspherical particles based on the vector radiative transfer theory. Radio Sci 19(5):1356–1366. https://doi.org/10.1029/RS019i005p01356 ADSCrossRefGoogle Scholar
  108. Jagodnicka AK, Stacewicz T, Karasiński G, Posyniak M, Malinowski SP (2009) Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol. Appl Opt 48:B8–B16.  https://doi.org/10.1364/AO.48.0000B8 ADSCrossRefGoogle Scholar
  109. Janzen J (1979) The refractive index of colloidal carbon. J Colloid Interface 69:436–447ADSCrossRefGoogle Scholar
  110. Jeffrey DJ, Acrivos A (1976) The rheological properties of suspensions of rigid particles. AIChE J 22:417–432CrossRefGoogle Scholar
  111. Johnson EA, Meyer RC, Hopkins RE, Mock WH (1939) The measurements of light scattered by the upper atmosphere from a search-light beam. J Opt Soc Am 29(12):512–517.  https://doi.org/10.1364/JOSA.29.000512 ADSCrossRefGoogle Scholar
  112. Johnson B, Joseph R, Nischan ML, Newbury AB, Kerekes JP, Barclay HT, Willard BC, Zayhowski JJ (1999) Compact active hyperspectral imaging system for the detection of concealed targets. In: Proceeding SPIE 3710, Detection and remediation technologies for mines and mine like targets iv. https://doi.org/10.1117/12.357002
  113. Johnston RG, Singham SB, Salzman GC (1988) Polarized light scattering. Comments Mo Cell Biophys 5(3):171–192Google Scholar
  114. Jones RC (1941) New calculus for the treatment of optical systems. J Opt Soc Am 31(7):488–493.  https://doi.org/10.1364/JOSA.31.000488 ADSzbMATHCrossRefGoogle Scholar
  115. Kalashnikova OV, Sokolik IN (2004) Modeling the radiative properties of nonspherical soil-derived mineral aerosols. J Quant Spectrosc Radiat Transfer 87(2):137–166.  https://doi.org/10.1016/j.jqsrt.2003.12.026 ADSCrossRefGoogle Scholar
  116. Khlebstov NG (2001) Orientational averaging of integrated cross sections in the discrete dipole method. Opt Spectrosc 90(3):408–415.  https://doi.org/10.1134/1.1358452 ADSCrossRefGoogle Scholar
  117. Kim A, Moscoso M (2001) Influence of the relative refractive index on the depolarization of multiply scattered waves. Phys Rev E 64:026612ADSCrossRefGoogle Scholar
  118. Kimura H, Kolokolova L, Mann I (2003) Optical properties of cometary dus-Constraints from numerical studies on light scattering by aggregate particles. Astron Astrophys 407:L5–L8ADSCrossRefGoogle Scholar
  119. King MD, Byrne DM, Herman BM, Reagan JA (1978) Aerosol size distributions obtained by inversions of spectral optical depth measurements. J Atmos Sci 35(11):2153–2167ADSCrossRefGoogle Scholar
  120. Kiselev NN, Jockers K, Rosenbush V, Velichko F, Bonev T, Karpov N (2000) Anomalous wavelength dependence of polarization of Comet 21P/Giacobini-Zinner. Planet Space Sci 48:1005–1009ADSCrossRefGoogle Scholar
  121. Klett JD (1981) Stable analytic inversion solution for processing lidar returns. Appl Opt 20(2):211–220.  https://doi.org/10.1364/AO.20.000211 ADSCrossRefGoogle Scholar
  122. Klett JD (1984) Anomalous diffraction model for inversion of multispectral extinction data including absorption effects. Appl Opt 23(24):4499–4508.  https://doi.org/10.1364/AO.23.004499 ADSCrossRefGoogle Scholar
  123. Kolokolova L (2016) Cometary dust under the microscope. Nature 537:37–38.  https://doi.org/10.1038/537037a ADSCrossRefGoogle Scholar
  124. Kolokolova L, Jockers K (1997) Composition of cometary dust from polarization spectra. Planet Space Sci 45:1543–1550ADSCrossRefGoogle Scholar
  125. Kolokolova L, Kimura H (2010) Effects of electromagnetic interaction in the polarization of light scattered by cometary and other types of cosmic dust. Astron Astrophys 513:A40.  https://doi.org/10.1051/0004-6361/200913681 ADSzbMATHCrossRefGoogle Scholar
  126. Kuik F, Stammes P, Hovenier JW (1991) Experimental determination of scattering matrices of water droplets and quartz particles. Appl Opt 30(33):4872–4881.  https://doi.org/10.1364/AO.30.004872 ADSCrossRefGoogle Scholar
  127. Lambert-Girard S, Hô N, Bourliaguet B, Paradis P-F, Piché M, Babin F (2012) Proposal for a standoff bio-agent detection SWIR/MWIR differential scattering lidar. In: Proceeding SPIE 8358, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII, vol 835805. https://doi.org/10.1117/12.918680
  128. Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon, OxfordzbMATHGoogle Scholar
  129. Lang-Yona N, Rudich Y, Segre E, Dinar E, Abo-Riziq A (2009) Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer. Anal Chem 81(5):1762–1769CrossRefGoogle Scholar
  130. Larusson F, Fantini S, Miller EL (2011a) Hyperspectral image reconstruction for diffuse optical tomography. Biomed Opt Express 2(4):46–965.  https://doi.org/10.1364/BOE.2.000946 CrossRefGoogle Scholar
  131. Larusson F, Fantini S, Miller EL (2011b) Hyperspectral image reconstruction for diffuse optical tomography. Biomed Opt Express 2(4):946–965.  https://doi.org/10.1364/BOE.2.000946 CrossRefGoogle Scholar
  132. Le Borgne JF, Crovisier JL, Arnaud J (1987) Polarimetry of visible and near UV molecular bands: Comets P/Halley and Hartley-Good. Astron Astrophys 173:180–182ADSGoogle Scholar
  133. Le Hors L, Hartemann P, Breugnot S (2000) Multispectral polarization active imager in the visible band. In: Proceeding SPIE 4035, Laser radar technology and applications V, vol 380. https://doi.org/10.1117/12.397809
  134. Lee RL, Samudio OR (2012) Spectral polarization of clear and hazy coastal skies. Appl Opt 51(31):7499–7508.  https://doi.org/10.1364/AO.51.007499 ADSCrossRefGoogle Scholar
  135. Lenham AP, Clay MR (1982) Drop-size distribution of fog droplets determined from transmission measurements in the 0.53–10.1 µm. Appl Opt 21(23):4191–4193.  https://doi.org/10.1364/AO.21.004191 ADSCrossRefGoogle Scholar
  136. Li D, Zeng N, Zeng M, Liao R, Ma H (2015) Identification of soot particles in air using polarization scattering method. In: Proceeding SPIE 9613, Polarization science and remote sensing VII, 961315. https://doi.org/10.1117/12.2193211
  137. Ligon DA, Gillespie JB, Pellegrino P (2000) Aerosol properties from spectral extinction and backscatter estimated by an inverse Monte Carlo method. Appl Opt 39(24):4402–4410.  https://doi.org/10.1364/AO.39.004402 ADSCrossRefGoogle Scholar
  138. Liu Y, Arnott WP, Hallett J (1999) Particle size distribution retrieval from multispectral optical depth: influences of particle nonsphericity and refractive index. J Geophys Res 104(D24):31753–31762.  https://doi.org/10.1029/1998JD200122 ADSCrossRefGoogle Scholar
  139. Liu L, Mishchenko MI, Arnott WP (2008) A study of radiative properties of fractal soot aggregates using the superposition T-Matrix method. J Quant Spectrosc Radiat Transfer 109(15):2656–2663.  https://doi.org/10.1016/j.jqsrt.2008.05.001 ADSCrossRefGoogle Scholar
  140. Lommel E (1889) Die Photometrie der diffusen Zuruckwerfung. Ann Phys 272:473–502zbMATHCrossRefGoogle Scholar
  141. Lorenz LV (1890) Upon the light reflected and refracted by a transparent sphere. Vidensk Selsk Skrifter 6:1–62Google Scholar
  142. Lyot B (1929) Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres. Ann Obs Meudon 8(1):1–161Google Scholar
  143. Ma X, Lu JQ, Brock RS, Jacobs KM, Yang P, Hu XH (2003) Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm. Phys Med Biol 48(24):4165–4172CrossRefGoogle Scholar
  144. Mackowski DW (2002) Discrete dipole moment method for calculation of the T-matrix for nonspherical particles. J Opt Soc Am A 19(5):881–893.  https://doi.org/10.1364/JOSAA.19.000881 ADSCrossRefGoogle Scholar
  145. Mackowski DW, Mishchenko MI (1996) Calculation of the T-Matrix and the scattering matrix for ensembles of spheres. J Opt Soc Am A 11(13):2266–2278.  https://doi.org/10.1364/JOSAA.13.002266 ADSCrossRefGoogle Scholar
  146. Manninen A, Kääriäinen T, Parviainen T, Buchter S, Heiliö M, Laurila T (2014) Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source. Opt Express 22(6):7172–7177.  https://doi.org/10.1364/OE.22.007172 ADSCrossRefGoogle Scholar
  147. Manolakis D, Marden D (2003) Hyperspectral image processing for automatic target detection applications. Lincoln Lab J 14:79–116Google Scholar
  148. Markel VA, Muratov L, Stockman M, George T (1991) Theory and numerical simulation of optical properties of fractal clusters. Phys Rev B 43(10):8183–8195.  https://doi.org/10.1103/PhysRevB.43.8183 ADSCrossRefGoogle Scholar
  149. Maxwell JC (1865) A dynamical theory of the electromagnetic field. Philos Trans R Soc Lond 155:459–512CrossRefGoogle Scholar
  150. McCord TB (1969) Color differences on the lunar surface. J Geophys Res 74(12):3131–3142ADSCrossRefGoogle Scholar
  151. McCord TB, Charette MP, Johnson TV, Lebofsky LA, Pieters C, Adams JB (1972) Lunar spectral types. J Geophys Res 77(8):1349–1359. https://doi.org/10.1029/JB077i008p01349 ADSCrossRefGoogle Scholar
  152. McNeil WR, Carswell AI (1975) Lidar polarization studies of the troposphere. Appl Opt 14(9):2158–2168.  https://doi.org/10.1364/AO.14.002158 ADSCrossRefGoogle Scholar
  153. Méjean G, Kasparian J, Salmon E, Yu J, Wolf J-P, Bourayou R, Sauerbrey R, Rodriguez M, Wöste L, Lehmann H, Stecklum B, Laux U, Eislöffel J, Scholz A, HatzesMejan AP (2003) Towards a supercontinuum-based infrared lidar. Appl Phys B 77(2):357–359.  https://doi.org/10.1007/s00340-003-1183-x ADSCrossRefGoogle Scholar
  154. Mie G (1908) Beiträge zur Optiktrüber Medien speziell kolloidaler Metallösungen. Ann Phys 330:3CrossRefGoogle Scholar
  155. Milham ME, Frickel RH, Embury JF, Anderson DH (1981) Determination of optical constants from extinction measurements. J Opt Soc Am 71(9):1099–1106.  https://doi.org/10.1364/JOSA.71.001099 ADSCrossRefGoogle Scholar
  156. Mishchenko MI (2011) Directional radiometry and radiative transfer: A new paradigm. J Quant Spectrosc Radiat 112:2079–2094.  https://doi.org/10.1016/j.jqsrt.2011.04.006 ADSCrossRefGoogle Scholar
  157. Mishchenko MI, Sassen K (1998) Depolarization of lidar returns by small ice crystals: an application to contrails. Geophys Res Lett 25(3):309–312.  https://doi.org/10.1029/97GL03764 ADSCrossRefGoogle Scholar
  158. Mishchenko MI, Yurkin MA (2017) On the concept of random orientation in far-field electromagnetic scattering by nonspherical particles. Opt Lett 42(3):494–497.  https://doi.org/10.1364/OL.42.000494 ADSCrossRefGoogle Scholar
  159. Mishchenko MI, Mackowski DW, Travis LD (1995) Scattering of light by bispheres with touching and separated components. Appl Opt 34(21):4589–4599.  https://doi.org/10.1364/AO.34.004589 ADSCrossRefGoogle Scholar
  160. Mishchenko MI, Travis LD, Kahn RA, West RA (1997) Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J Geophys Res 102(D14):16831–16847.  https://doi.org/10.1029/96JD02110 ADSCrossRefGoogle Scholar
  161. Mishchenko MI, Hovenier JW, Travis LD (2000) Light scattering by nonspherical particles: theory, measurements, and applications. Academic Press, San DiegoGoogle Scholar
  162. Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption, and emission of light by small particles. Cambridge University Press, CambridgeGoogle Scholar
  163. Mishchenko MI, Travis LD, Lacis AA (2006) Multiple scattering of light by particles. Cambridge University Press, CambridgeGoogle Scholar
  164. Mohanty SK, Ghosh N, Majumder SK, Gupta PK (2001) Depolarization of autofluorescence from malignant and normal human breast tissues. Appl Opt 40(7):1147–1154.  https://doi.org/10.1364/AO.40.001147 ADSCrossRefGoogle Scholar
  165. Moorthy KK, Nair PR, Krishna Murthy BV (1991) Size distribution of coastal aerosols: effects of local sources and sinks. J Appl Meteorol 30(6):844–852. https://doi.org/10.1175/1520-0450(1991)030<0844:SDOCAE>2.0.CO;2 CrossRefGoogle Scholar
  166. Mourant J, Freyer J, Heilscher A, Eick A, Shen D, Johnson T (1998) Mechanisms of light scattering from biological cells relevant to non-invasive optical-tissue diagnosis. Appl Opt 37(16):3586–3593.  https://doi.org/10.1364/AO.37.003586 ADSCrossRefGoogle Scholar
  167. Mourant JR, Johnson TM, Carpenter S, Guerra A, Aida T, Freyer JP (2002) Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures. J Biomed Opt 7(3):378–387.  https://doi.org/10.1117/1.1483317 CrossRefGoogle Scholar
  168. Mudd HT, Kruger CH, Murray ER (1982) Measurement of IR laser backscatter spectra from sulfuric acid and ammonium sulfate aerosols. Appl Opt 21(6):1146–1154.  https://doi.org/10.1364/AO.21.001146 ADSCrossRefGoogle Scholar
  169. Mueller H (1943) Memorandumon the polarization optics of the photo-elastic shutter. In: Project OEMsr-576Google Scholar
  170. Muller H, Quenzel H (1985) Information content of multispectral lidar measurements with respect to the aerosol size distribution. Appl Opt 24(5):648–654.  https://doi.org/10.1364/AO.24.000648 ADSCrossRefGoogle Scholar
  171. Müller D, Wandinger U, Althausen D, Mattis I, Ansmann A (1998) Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths. Appl Opt 37(12):2260–2263.  https://doi.org/10.1364/AO.37.002260 ADSCrossRefGoogle Scholar
  172. Müller D, Wandinger U, Ansmann A (1999) Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory. Appl Opt 38(12):2346–2357.  https://doi.org/10.1364/AO.38.002346 ADSCrossRefGoogle Scholar
  173. Müller D, Wagner F, Wandinger U, Ansmann A, Wendisch M, Althausen D, von Hoyningen-Huene W (2000) Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: experiment. Appl Opt 39(12):1879–1892.  https://doi.org/10.1364/AO.39.001879 ADSCrossRefGoogle Scholar
  174. Müller D, Veselovskii I, Kolgotin A, Tesche M, Ansmann A, Dubovik O (2013) Vertical profiles of pure dust and mixed smoke–dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations. Appl Opt 52:3178–3202.  https://doi.org/10.1364/AO.52.003178 ADSCrossRefGoogle Scholar
  175. Munoz O, Hovenier JW (2011) Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. J Quant Spectrosc Radiat Transfer 112:1646–1657.  https://doi.org/10.1016/j.jqsrt.2011.02.005 ADSCrossRefGoogle Scholar
  176. Muñoz O, Volten H, de Haan JF, Vassen W, Hovenier JW (2000) Experimental determination of scattering matrices of olivine and Allende meteorite particles. Astron Astrophys 360:777–788ADSGoogle Scholar
  177. Murayama T, Furushima M, Oda A, Iwasaka N, Kai K (1996) Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo. J Meteorol Soc Jpn 74(4):571–578 ISSN:0026-1165CrossRefGoogle Scholar
  178. Myers R, Nordsieck K (1984) Spectropolarimetry of comets Austin and Churyumov-Gerasimenko. Icarus 58:431–439.  https://doi.org/10.1016/0019-1035(84)90088-5 ADSCrossRefGoogle Scholar
  179. Nagdimunov L (2013) Polarimetric technique to study (pre)biological organics in cosmic dust and planetary aerosols. Earth Planets Space 65:14CrossRefGoogle Scholar
  180. Nilsson B (1979) Meteorological influence on aerosol extinction in the 0.2–40 μm wavelength range. Appl Opt 18(20):3457–3473.  https://doi.org/10.1364/AO.18.003457 ADSCrossRefGoogle Scholar
  181. Novikova T, Pierangelo A, Manhas S, Benali A, Validire P, Gayet B, De Martino A (2014) The origins of polarimetric image contrast between healthy and cancerous human colon tissue. Appl Phys Lett 102:241103.  https://doi.org/10.1063/1.4811414 ADSCrossRefGoogle Scholar
  182. Okada K, Heintzenberg J, Kai K, Qin Y (2001) Shape of atmospheric mineral particles collected in three Chinese arid-regions. Geophys Res Lett 28(16):3123.  https://doi.org/10.1029/2000GL012798 ADSCrossRefGoogle Scholar
  183. Olsen RO, Okrasinski R, Ben-Shalom A (1983) Measured spectral extinction coefficient dependence of vehicle dust at visible, infrared and near-millimeter wavelengths. Infrared Phys 23(6):301–306.  https://doi.org/10.1016/0020-0891(83)90002-7 ADSCrossRefGoogle Scholar
  184. Pathria RK (2003) Statistical mechanics, 2nd edn. Butterworth Heinemann, OxfordzbMATHGoogle Scholar
  185. Patskovsky S, Bergeron E, Rioux D, Simarda M, Meuniera M (2014) Hyperspectral reflected light microscopy of plasmonic Au/Ag alloy nanoparticles incubated as multiplex chromatic biomarkers with cancer cells. Analyst 139:5247–5253ADSCrossRefGoogle Scholar
  186. Peng Y, Lu R (2008) Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biol Technol 48:52–62CrossRefGoogle Scholar
  187. Perelman LT, Backman V, Wallace M, Zonios G, Manoharan R, Nusrat A, Shields S, Seiler M, Lima C, Hamano T, Itzkan I, Van Dam J, Crawford JM, Feld MS (1998) Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution. Phys Rev Lett 80(3):627–630.  https://doi.org/10.1103/PhysRevLett.80.627 ADSCrossRefGoogle Scholar
  188. Pieters CM (1999) The Moon as a spectral calibration standard enabled by lunar samples: the Clementine example in new views of the Moon II, Workshop, vol 8025 Google Scholar
  189. Pilbratt GL, Riedinger JR, Passvogel T, Crone G, Doyle D, Gageur U, Heras AM, Jewell C, Metcalfe L, Ott S, Schmidt M (2010) Herschel Space Observatory, an ESA facility for far-infrared and submillimetre astronomy. Astron Astrophys 518:L1.  https://doi.org/10.1051/0004-6361/201014759 ADSCrossRefGoogle Scholar
  190. Pospergelis MM (1969) Spectroscopic measurements of the four Stokes parameters for light scattered by natural objects. Sov Astron 12:973–977ADSGoogle Scholar
  191. Post MJ, Grund CJ, Langford AO, Proffitt MH (1992) Observations of Pinatubo ejecta over Boulder, Colorado by lidars of three different wavelengths. Geophys Res Lett 19:195–198.  https://doi.org/10.1029/91GL02794 ADSCrossRefGoogle Scholar
  192. Powers MA, Davis CC (2012) Spectral LADAR: active range-resolved three-dimensional imaging spectroscopy. Appl Opt 51(10):1468–1478.  https://doi.org/10.1364/AO.51.001468 ADSCrossRefGoogle Scholar
  193. Pritchard BS, Elliott WG (1960) Two instruments for atmospheric optics measurements. J Opt Soc Am 50(3):191–202.  https://doi.org/10.1364/JOSA.50.000191 ADSCrossRefGoogle Scholar
  194. Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by nonspherical dielectric grains. Astrophys J 186:705–714.  https://doi.org/10.1086/152538 ADSCrossRefGoogle Scholar
  195. Pyaskovskaya-Fesenkova EV (1958) On scattering and polarization of light in desert conditions. Dokl Akad Nauk SSSR 123(6):1006–1009Google Scholar
  196. Qi J, Barrière C, Wood TC, Elson DS (2012) Polarized multispectral imaging in a rigid endoscope based on elastic light scattering spectroscopy. Biomed Opt Express 3(9):2087–2099.  https://doi.org/10.1364/BOE.3.002087 CrossRefGoogle Scholar
  197. Qing P, Nakane H, Sasano Y, Kitamura S (1989) Numerical simulation of the retrieval of aerosol size distribution from multiwavelength laser radar measurements. Appl Opt 28(24):5259–5265.  https://doi.org/10.1364/AO.28.005259 ADSCrossRefGoogle Scholar
  198. Rajeev K, Parameswaran K (1998) Iterative method for the inversion of multiwavelength lidar signals to determine aerosol size distribution. Appl Opt 37(21):4690–4700.  https://doi.org/10.1364/AO.37.004690 ADSCrossRefGoogle Scholar
  199. Ramella-Roman JC, Nayak A, Prahl SA (2011) Spectroscopic sensitive polarimeter for biomedical applications. J Biomed Opt 16(4):047001.  https://doi.org/10.1117/1.3561907 CrossRefGoogle Scholar
  200. Ranka JK, Windeler RS, Stentz AJ (2000) Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt Lett 25:25–27ADSCrossRefGoogle Scholar
  201. Ray A, Kopelman R, Chon B, Briggman K, Hwang J (2016) Scattering based hyperspectral imaging of plasmonic nanoplate clusters towards biomedical applications. J Biophotonics 9:721–729CrossRefGoogle Scholar
  202. Reichardt J, Tsias A, Behrendt A (2000) Optical properties of PSC Ia-enhanced at UV and visible wavelengths: model and observations. Geophys Res Lett 27:201–204.  https://doi.org/10.1029/1999GL010904 ADSCrossRefGoogle Scholar
  203. Richardson JM, Aldridge JC, Milstein AB (2008) Polarimetric lidar signatures for remote detection of biological warfare agents. In: Proceeding SPIE 6972, Polarization: measurement, analysis, and remote sensing VIII, 69720E. https://doi.org/10.1117/12.777833
  204. Richert M, Orlik X, de Martino A (2009) Adapted polarization state contrast image. Opt Express 17(16):14199–14210.  https://doi.org/10.1364/OE.17.014199 ADSCrossRefGoogle Scholar
  205. Riviere N, Ceolato R, Hespel L (2012) Multispectral polarized BRDF: design of a highly resolved reflectometer and development of a data inversion technique. Optica Applicata 42:7–22Google Scholar
  206. Riviere N, Ceolato R, Hespel L (2013) Polarimetric and angular light-scattering from dense media: comparison of a vectorial radiative transfer model with analytical, stochastic and experimental approaches. J Quant Spectrosc Radiat Transfer 131:88–94.  https://doi.org/10.1016/j.jqsrt.2013.04.019 ADSCrossRefGoogle Scholar
  207. Roslund C, Beckman C (1994) Disputing Viking navigation by polarized light. Appl Opt 33(21):4754–4755.  https://doi.org/10.1364/AO.33.004754 ADSCrossRefGoogle Scholar
  208. Rozenberg GV (1968) Optical investigations of atmospheric aerosols. Sov Phys Usp 11(3):353–380ADSCrossRefGoogle Scholar
  209. Sakai T, Nagai T, Kobayashi T, Yamazaki A, Uchiyama A, Mano Y (2007) Multiwavelength and polarization lidar measurements of Asian dust layers over Tsukuba, Japan: a case study. Atmos Chem Phys Discuss 7(4):10179–10203.  https://doi.org/10.5194/acpd-7-10179-2007 ADSCrossRefGoogle Scholar
  210. Sasano Y, Browell EV (1989) Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations. Appl Opt 28(9):1670–1679.  https://doi.org/10.1364/AO.28.001670 ADSCrossRefGoogle Scholar
  211. Sassen K (1991) The polarization lidar technique for cloud research: a review and current assessment. Bull Am Meteor Soc 72:1848–1866. https://doi.org/10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2 CrossRefGoogle Scholar
  212. Sassen K, Zhu J, Webley P, Dean K, Cobb P (2007) Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska. Geophys Res Lett 34:L08803.  https://doi.org/10.1029/2006GL027237 ADSGoogle Scholar
  213. Scheffold F, Cerbino R (2007) New trends in light scattering. Curr Opin Colloid Interface Sci 12(1):50–57.  https://doi.org/10.1016/j.cocis.2007.03.005 CrossRefGoogle Scholar
  214. Schotland RM, Sassen K, Stone R (1971) Observations by lidar of linear depolarization ratios for hydrometeors. J Appl Meteorol 10:1011–1017. https://doi.org/10.1175/1520-0450(1971)010<1011:OBLOLD>2.0.CO;2 CrossRefGoogle Scholar
  215. Schuster A (1905) Radiation through a foggy atmosphere. Astrophys J 21:1.  https://doi.org/10.1086/141186 ADSCrossRefGoogle Scholar
  216. Sekera Z (1957) Light scattering in the atmosphere and the polarization of sky light. J Opt Soc Am 47(6):484–490.  https://doi.org/10.1364/JOSA.47.000484 ADSCrossRefGoogle Scholar
  217. Sellmeier W (1871) Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen. Ann der Phys und Chem 219Google Scholar
  218. Sharma N, Arnold IJ, Moosmüller H, Arnott WP, Mazzoleni C (2013) Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source. Atmos Meas Tech 6:3501–3513.  https://doi.org/10.5194/amt-6-3501-2013 CrossRefGoogle Scholar
  219. Shaw GE, Reagan JA, Herman BM (1973a) Investigations of atmospheric extinction using direct solar radiation measurements made with multiple wavelength radiometer. J Appl Meteorol 12(2):374–380. https://doi.org/10.1175/1520-0450(1973)012<0374:IOAEUD>2.0.CO;2 CrossRefGoogle Scholar
  220. Shaw GE, Reagan JA, Herman BM (1973b) Investigations of atmospheric extinction using direct solar radiation measurements made with multiple wavelength radiometer. J Appl Meteorol 12:374CrossRefGoogle Scholar
  221. Shkuratov YG (1980) Albedo of asteroids. Sov Astron J 57(6):1320–1322Google Scholar
  222. Shkuratov YG (1981) Connection between the albedo and polarization properties of the Moon. Fresnel component of reflected light. Sov Astron J 25:490ADSGoogle Scholar
  223. Shkuratov YG, Muinonen K, Bowell E, Lumme K, Peltoniemi J, Kreslavsky MA, Stankevich DG, Tishkovetz VP, Opanasenko NV, Malkumova LY (1994) A critical review of theoretical models of negatively polarized light scattered by atmosphereless solar system bodies. Earth Moon Planet 65:201–246ADSCrossRefGoogle Scholar
  224. Sokolov K (1999) Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology. Opt Express 5(13):302–317.  https://doi.org/10.1364/OE.5.000302 ADSCrossRefGoogle Scholar
  225. Soni J, Jose GP, Ghosh S, Pradhan A, Sengupta TK, Panigrahi PK, Ghosh N (2011) Probing tissue multifractality using wavelet based multifractal detrended fluctuation analysis: applications in precancer detection. In: 4th International Conference on Biomedical Engineering and Informatics (BMEI), vol 1, pp 448–452. https://doi.org/10.1109/BMEI.2011.6098255
  226. Sorensen CM, Cai J, Lu N (1992) Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames. Appl Opt 31(30):6547–6557.  https://doi.org/10.1364/AO.31.006547 ADSCrossRefGoogle Scholar
  227. Sparks WB, Hough J, Germer TA, Chen F, DasSarma S, DasSarma P, Robb FT, Manset N, Kolokolova L, Reid N, Macchetto FD, Martin W (2009) Detection of circular polarization in light scattered from photosynthetic microbes. Proc Natl Acad Sci USA 106(19):7816–7821.  https://doi.org/10.1073/pnas.0810215106 ADSCrossRefGoogle Scholar
  228. Stenflo JO, Biverot H, Stenmark L (1976) Ultraviolet polarimeter to record resonance-line polarization in the solar spectrum around 130–150 nm. Appl Opt 15:1188–1198.  https://doi.org/10.1364/AO.15.001188 ADSCrossRefGoogle Scholar
  229. Sterzik MF, Palle SBE (2012) Biosignatures as revealed by spectropolarimetry of Earthshine. Nature 483:64–66ADSCrossRefGoogle Scholar
  230. Stokes GC (1852) On the composition and resolution of streams of polarized light from different sources. Trans Cambridge Philos Soc 9:399–416ADSGoogle Scholar
  231. Stowe LL (1977) Polarization of reflected sunlight as measured from a high-altitude balloon. In: Proceeding SPIE 0112, optical polarimetry: instrumentation and applications, pp 176–183. https://doi.org/10.1117/12.955561
  232. Sugimoto N, Lee CH (2006) Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths. Appl Opt 45(28):7468–7474.  https://doi.org/10.1364/AO.45.007468 ADSCrossRefGoogle Scholar
  233. Sugimoto N, Matsui I, Shimizu A, Uno I, Asai K (2002) Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two-wavelength polarization lidar on board the research vessel Mirai. Geophys Res Lett 29(19). https://doi.org/10.1029/2002GL015112
  234. Sun W, Pan H, Videen G (2009) General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface. Appl Opt 48:6015–6025.  https://doi.org/10.1364/AO.48.006015 ADSCrossRefGoogle Scholar
  235. Sun W, Videen G, Lin B, Hu Y, Fu Q (2011) Beyond Snell’s law: refraction of a nano-beam of light. J Quant Spectrosc Radiat 112:174–176.  https://doi.org/10.1016/j.jqsrt.2010.03.009 ADSCrossRefGoogle Scholar
  236. Sun W, Videen G, Fu Q, Hu Y (2013a) Scattered-field FDTD and PSTD algorithms with CPML absorbing boundary conditions for light scattering by aerosols. J Quant Spectrosc Radiat 131:166–174.  https://doi.org/10.1016/j.jqsrt.2013.07.015 ADSCrossRefGoogle Scholar
  237. Sun W, Liu Z, Videen G, Fu Q, Muinonen K, Winker DM, Lukashin C, Jin Z, Lin B, Huang J (2013b) For the depolarization of linearly polarized light by smoke particles. J Quant Spectrosc Radiat 122:233–237.  https://doi.org/10.1016/j.jqsrt.2012.03.031 ADSCrossRefGoogle Scholar
  238. Sun Z, Zhang J, Zhao Y (2013c) Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared. IEEE Geosci Remote Sens Lett 10:170–173ADSCrossRefGoogle Scholar
  239. Sun W, Videen G, Mishchenko MI (2014a) Detecting super-thin clouds with polarized sunlight. Geophys Res Lett 41:688–693.  https://doi.org/10.1002/2013GL058840 ADSCrossRefGoogle Scholar
  240. Sun Z, Zhang J, Tong Z, Zhao Y (2014b) Particle size effects on the reflectance and negative polarization of light backscattered from natural surface particulate. J Quant Spectrosc Radiat Transfer 133:1–12.  https://doi.org/10.1016/j.jqsrt.2013.03.013 ADSCrossRefGoogle Scholar
  241. Sun W, Lukashin C, Baize RR, Goldin D (2015a) Modeling polarized solar radiation for CLARREO inter-calibration applications: validation with PARASOL data. J Quant Spectrosc Radiat Transfer 150:121–133.  https://doi.org/10.1016/j.jqsrt.2014.05.013 ADSCrossRefGoogle Scholar
  242. Sun W, Baize RR, Lukashin C, Videen G, Hu Y, Lin B (2015b) Modeling polarized solar radiation of the ocean-atmosphere system for satellite remote sensing applications, light scattering reviews. Praxis Publishing, United Kingdom, p 10Google Scholar
  243. Suzuki T, Kurosaki H, Enkyo S, Koshiishi H (1997) Application of an AOTF imaging spectro-polarimeter. In: Proceeding SPIE 3121, polarization: measurement, analysis, and remote sensing. https://doi.org/10.1117/12.278978
  244. Swami M, Manhas S, Patel H, Gupta P (2010) Mueller matrix measurements on absorbing turbid medium. Appl Opt 49(18):3458–3464.  https://doi.org/10.1364/AO.49.003458 ADSCrossRefGoogle Scholar
  245. Tanaka M, Nakajima T, Takamura T (1982) Simultaneous determination of the complex refractive index and size distribution of airborne and water suspended particles from light scattering measurements. J Meteorol Soc Jpn 60(6):1259–1272CrossRefGoogle Scholar
  246. Tang C, Aydin K (1995) Scattering from ice crystals at 94 and 220 GHz millimetre wave frequencies. IEEE Trans Geosci Remote Sens GE-33:93–99ADSCrossRefGoogle Scholar
  247. Tang H, Lin JZ (2013) Retrieval of spheroid particle size distribution from spectral extinction data in the independent mode using PCA approach. J Quant Spectrosc Radiat Transfer 115:78–92.  https://doi.org/10.1016/j.jqsrt.2012.09.005 ADSCrossRefGoogle Scholar
  248. Thompson RC, Bottiger JR, Fry ES (1980) Measurement of polarized light interactions via the Mueller matrix. Appl Opt 19(8):1323–1332.  https://doi.org/10.1364/AO.19.001323 ADSCrossRefGoogle Scholar
  249. Tishkovets VP, Petrova EV, Jockers K (2004) Optical properties of aggregate particles comparable in size to the wavelength. J Quant Spectrosc Radiat Transfer 86(3):241–265.  https://doi.org/10.1016/j.jqsrt.2003.08.003 ISSN 0022-407ADSCrossRefGoogle Scholar
  250. Tousey R, Hulburt EO (1947) Brightness and polarization of the daylight sky at various altitudes above sea level. J Opt Soc Am 37(2):78–92.  https://doi.org/10.1364/JOSA.37.000078 ADSCrossRefGoogle Scholar
  251. Travis LD (1979) Imaging and polarimetry with the pioneer Venus orbiter cloud photopolarimeter. In: SPIE 0183 Space Optics II. https://doi.org/10.1117/12.957426
  252. Tuchin VV (1997) Light scattering study of tissues. Phys Usp 40(5):495–515.  https://doi.org/10.3367/UFNr.0167.199705c.0517 ADSCrossRefGoogle Scholar
  253. Twomey S, Howell HB (1965) The relative merit of white and monochromatic light for the determination of visibility by backscattering measurements. Appl Opt 4(4):501–506.  https://doi.org/10.1364/AO.4.000501 ADSCrossRefGoogle Scholar
  254. Umov N (1912) Eine spektropolariskopische Methode zur Erforschung der Lichtapsorption und der Natur der Farbstoffe. Physikalische Zeitschrift 13:962–971Google Scholar
  255. Upadhyay D, Mondal S, Lacot E, Orlik X (2011) Full analytical solution of adapted polarisation state contrast imaging. Opt Express 19(25):25188–25198.  https://doi.org/10.1364/OE.19.025188 ADSCrossRefGoogle Scholar
  256. Van de Hulst HC (1981) Light scattering by small particles. Dover Publications, New YorkGoogle Scholar
  257. Van de Merwe WP, Huffman DR, Bronk BV (1989) Reproducibility and sensitivity of polarized light scattering for identifying bacterial suspension. Appl Opt 28(23):5052–5057.  https://doi.org/10.1364/AO.28.005052 ADSCrossRefGoogle Scholar
  258. Vasilyev OB, Contreras AL, Velazquez AM, Fabi RP, Ivlev LS, Kovalenko AP, Vasilyev AV, Jukov VM, Welch RM (1995) Spectral optical properties of the polluted atmosphere of Mexico City (spring-summer 1992). J Geophys Res 100(D12):26027–26044.  https://doi.org/10.1029/95JD02370 ADSCrossRefGoogle Scholar
  259. Veselovskii I, Kolgotin A, Griaznov V, Müller D, Wandinger U, Whiteman DN (2002) Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. Appl Opt 41(18):3685–3699.  https://doi.org/10.1364/AO.41.003685 ADSCrossRefGoogle Scholar
  260. Veselovskii I, Kolgotin A, Müller D, Whiteman DN (2005) Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis. Appl Opt 44(25):5292–5303.  https://doi.org/10.1364/AO.44.005292 ADSCrossRefGoogle Scholar
  261. Wang Y, Hu B, Le HQ (2007) Laser Multi-Spectral Polarimetric Diffuse-Scatter Imaging. In: Proceeding SPIE 6565, algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XIII, 65650R. https://doi.org/10.1117/12.719247
  262. Ward G, Cushing KM, McPeters RD, Green AES (1973) Atmospheric aerosol index of refraction and size-altitude distribution from bistatic laser scattering and solar aureole measurements. Appl Opt 12(11):2585–2592.  https://doi.org/10.1364/AO.12.002585 ADSCrossRefGoogle Scholar
  263. Weiss-Wrana K (1983) Optical properties of interplanetary dust: Comparison with light scattering by larger meteoritic and terrestrial grains. Astron Astrophys 126(2):240–250 ISSN 0004-6361ADSGoogle Scholar
  264. Whitehead VS, Coulson K (1990) The space shuttle as a polarization observation platform. In: Proceeding SPIE 1166, polarization considerations for optical systems II, vol 42. https://doi.org/10.1117/12.962877
  265. Wiegner M, Gasteiger J, Kandler K, Weinzierl B, Rasp K (2009) Numerical simulations of optical properties of Saharan dust aerosols with special emphasis on the linear depolarization ratio. Tellus B 61B(1):180–194.  https://doi.org/10.1111/j.1600-0889.2008.00381.x ADSCrossRefGoogle Scholar
  266. Winker DM, Pelon JR, McCormick MP (2003) The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds. In: Proceeding SPIE 4893, lidar remote sensing for industry and environment monitoring III, vol 1. https://doi.org/10.1117/12.466539
  267. Wolff M (1975) Polarization of light reflected from rough planetary surface. Appl Opt 14(6):1395–1405.  https://doi.org/10.1364/AO.14.001395 ADSCrossRefGoogle Scholar
  268. Wolstencroft RD (1974) The circular polarization of light reflected from certain optically active surfaces. In: Gehrels T (eds) Planets, stars, and nebulae: Studied with photopolarimetry, IAU Coll., vol 23, p 495Google Scholar
  269. Wood SA (1984) Identification of aerosol composition from multi-wavelength lidar measurements. Old Dominion Univ., Dept. of Geophysical Sciences, Norfolk, VA, United States, NASA-CR-173445, NAS 1.26:173445, GSTR-84-4Google Scholar
  270. Yamamoto G, Tanaka M (1969) Determination of aerosol size distribution from spectral attenuation measurements. Appl Opt 8(2):447–453.  https://doi.org/10.1364/AO.8.000447 ADSCrossRefGoogle Scholar
  271. Yang P, Liou KN (1996) Finite difference time domain method for light scattering by small ice crystals in three-dimensional shape. J Opt Soc Am A 13:2072–2085.  https://doi.org/10.1364/JOSAA.13.002072 ADSCrossRefGoogle Scholar
  272. Yang X, Wenig M (2009) Study of columnar aerosol size distribution in Hong Kong. Atmos Chem Phys 9:6175–6189.  https://doi.org/10.5194/acp-9-6175-2009 ADSCrossRefGoogle Scholar
  273. Yang P, Liou KN, Mishchenko MI, Gao B-C (2000) Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols. Appl Opt 39:3727–3737.  https://doi.org/10.1364/AO.39.003727 ADSCrossRefGoogle Scholar
  274. Yang P, Feng Q, Hong G, Kattawar GW, Wiscombe WJ, Mishchenko MI, Dubovik O, Laszlo I, Sokolik IN (2007) Modeling of the scattering and radiative properties of nonspherical dust-like aerosols. J Aerosol Sci 38(10):995.  https://doi.org/10.1016/j.jaerosci.2007.07.001 ADSCrossRefGoogle Scholar
  275. Yee SK (1966) Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. IEEE Trans Antennas Propag AP-14:302–307. doi:10.1.1.172.6957.ADSzbMATHGoogle Scholar
  276. Yi B, Hsu CN, Yang P, Tsay SC (2011) Radiative transfer simulation of dust-like aerosols: Uncertainties from particle shape and refractive index. J Aerosol Sci 42(10):631–644.  https://doi.org/10.1016/j.jaerosci.2011.06.008 ADSCrossRefGoogle Scholar
  277. Yoshiyama H, Ohi A, Ohta K (1996) Derivation of the aerosol size distribution from a bistatic system of a multiwavelength laser with the singular value decomposition method. Appl Opt 35(15):2642–2648.  https://doi.org/10.1364/AO.35.002642 ADSCrossRefGoogle Scholar
  278. Young AT (1981) Rayleigh scattering. Appl Opt 20(4):533.  https://doi.org/10.1364/AO.20.000533 ADSCrossRefGoogle Scholar
  279. Yurkin MA, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc Radiat Transfer 106(1–3):558–589.  https://doi.org/10.1016/j.jqsrt.2007.01.034 ADSCrossRefGoogle Scholar
  280. Zakian C, Pretty I, Ellwood R (2009) Near-infrared hyperspectral imaging of teeth for dental caries detection. J Biomed Opt 14(14):64047CrossRefGoogle Scholar
  281. Zeylikovich I, Kartazaev V, Alfano RR (2005) Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber. J Opt Soc Am B 22:1453–1460ADSCrossRefGoogle Scholar
  282. Zhang H, Voss KJ (2009) Bidirectional reflectance and polarization measurements on packed surfaces of benthic sediments and spherical particles. Opt Express 17(7):5217–5231.  https://doi.org/10.1364/OE.17.005217 ADSCrossRefGoogle Scholar
  283. Zhao F, Gong Z, Hu H, Tanaka M, Hayasaka T (1997) Simultaneous determination of the aerosol complex index of refraction and size distribution from scattering measurements of polarized light. Appl Opt 36(30):7992–8001.  https://doi.org/10.1364/AO.36.007992 ADSCrossRefGoogle Scholar
  284. Zhao W, Xu X, Dong M, Chen W, Gu X, Hu C, Huang Y, Gao X, Huang W, Zhang W (2014) Development of a cavity-enhanced aerosol albedometer. Atmos Meas Tech 7:2551–2566.  https://doi.org/10.5194/amt-7-2551-2014 CrossRefGoogle Scholar
  285. Zieger P, Ruhtz T, Preusker R, Fischer J (2007) Dual-aureole and sun spectrometer system for airborne measurements of aerosol optical properties. Appl Opt 46(35):8542–8552.  https://doi.org/10.1364/AO.46.008542 ADSCrossRefGoogle Scholar
  286. Zimnyakov DA, Sinichkin YP, Tuchin VV (2005) Polarization reflectance spectroscopy of biological tissues: diagnostic applications. Izv Vyash Uchebn Zaved Radiofiz 47:957–975Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Optronics DepartmentONERA, The French Aerospace LabToulouseFrance

Personalised recommendations