Skip to main content

Polarized Radiative Transfer in Optically Active Light Scattering Media

  • Chapter
  • First Online:

Part of the book series: Springer Series in Light Scattering ((SSLS))

Abstract

The disperse media composed of non-spherical particles (say, dust aerosols layers, and ice crystal clouds) can appear both optically isotropic and optically anisotropic, depending on local optical characteristics of turbid medium in question and also on the orientation of particles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ablitt BP, Hopcraft KI, Turpin KD, Chang PCY, Walker CG, Jakeman E (2006) Imaging and multiple scattering through media containing optically active particles. https://doi.org/10.1088/0959-7174/9/4/308

    Google Scholar 

  • Alexandrov MD, Rogozkin DB, Remizovich VS (1993) Multiple light scattering in a two-dimensional medium with large scatterers. J Opt Soc Am A 10:2602–2610

    Article  ADS  Google Scholar 

  • Alonova MV, Angelsky OV, Ermolenko SB, Zimnyakov DA, Isaeva EA, Sina JS, Skurlov ID, Tverdova AA, Ushakova OV (2013) Optical properties of densely packed dispersive systems: effective medium approximation, Vestnik SGP 3:72 (in Russian)

    Google Scholar 

  • Apresyan LA, Kravtsov YuA (1996) Radiation transfer. statistical and wave aspects. Basel, Gordon and Breach 1996. (Original Russian edition: Nauka, Moscow, 1979.)

    Google Scholar 

  • Arsenova EA (2009) Correlation functions and the features of transfer and scattering of waves in liquid crystals, Doct. Thesis, S.-Petersburg, (in Russian)

    Google Scholar 

  • Astrov DN (1960) The magnetoelectric effect in antiferromagnetics. Zh Eksp Teor Fiuz 38:984–985 (in Russian)

    Google Scholar 

  • Azzam RM (1978) Propagation of partially polarized light through anisotropic media with without depolarization: a differential 4 4· matrix calculus. J Opt Soc Am 68:1756–1767

    Article  ADS  Google Scholar 

  • Azzam RM, Bashara NM (1989) Ellipsometry and polarized light. North Holland PC, NY

    Google Scholar 

  • Barabanenkov YuN (1973) Wave corrections to the transfer equation for “back” scattering. Radiophys Quantum Electron 16:65–71 (in Russian)

    Article  MathSciNet  ADS  Google Scholar 

  • Barabanenkov YuN (1975) Multiple scattering of waves by the ensembles of particles and the theory of radiation transport. Sov Phys—Uspekhi 18:673–689 (in Russian)

    Google Scholar 

  • Barabanenkov YuN, Kravtsov YuA, Ozrin VD, Saichev AI (1991) Enhanced backscattering in optics. Prog Opt 29:65–197

    Article  Google Scholar 

  • Barabanenkov YuN, Zurk LM, Barabanenkov MYu (1995) Poynting’s theorem and electromagnetic wave multiple scattering in dense media near resonance: modified radiative transfer equation. J Electromag Waves and Appl 9:1393–1420

    Article  Google Scholar 

  • Bass LP, Nikolaeva OV, Kuznetsov VS, Bykov AV, Priezzhev AV, Dergachev AA (2009) Modeling of optical radiation propagation in bio-tissue phantom with using of the supercomputer MBC1000, Mathem. Modelirovanie 21:3–14 (in Russian)

    MATH  Google Scholar 

  • Bass LP, Nikolaeva OV, Kuznetsov VS, Bykov AV, Priezzhev AV (2010) Parallel algorithms for simulation of ultrashort pulse propagation in turbid media, IL NUOVO CIMENTO 33 C, n. 1

    Google Scholar 

  • Bautin NN, Leontovich EL (1976) Methods of qualitative analysis of dynamical systems in the plane, M. Nauka (in Russian)

    Google Scholar 

  • Bolgov DI, Remizovich VS, Rogozkin DB (1998) Multiple scattering of light in a 2-D medium with large-scale inhomogeneities: an exactly solvable model and approximate methods of calculation. Laser Phys 8:462–470

    Google Scholar 

  • Born M, Wolf E. (1975). Principles of optics, 5th Ed, Pergamon

    Google Scholar 

  • Borovoi AG (1966a) Iteration method in multiple scattering. Izv Vyssh Ucheb Zaved Fiz 2:175–177

    Google Scholar 

  • Borovoi AG (1966b) Iteration method in multiple scattering: radiative transfer equation. Izv Vyssh Ucheb Zaved Fizika 6:50–54

    Google Scholar 

  • Borovoi AG (1967a) Multiple scattering of short waves by a system of correlated particles. I. Averaged field. Izv Vyssh Ucheb Zaved Fizika n 4:97–101

    Google Scholar 

  • Borovoi AG (1967b) Multiple scattering of short waves by a system of correlated particles. II. Kinetic equation. Izv Vyssh Ucheb Zaved Fizika n 5:7–11

    Google Scholar 

  • Borovoi AG (1983) Light propagation in media with closely packed particles. Optics and Spectrosc 54:449–450

    ADS  Google Scholar 

  • Borovoi AG, Grishin IA, Oppel UG, (2000) Mueller matrix for oriented hexagonal ice crystals of cirrus clouds. In: Eleventh international workshop on multiple scattering LIDAR experiments (MUSCLE 11), November 1–3, 2000, Williamsburg, Virginia, USA, 2000

    Google Scholar 

  • Borovoi A, Grishin I, Naats E, Oppel U (2002) Light backscattering by hexagonal ice crystals. J Quant Spectrosc Radiat Transfer 72(4):403–417

    Article  ADS  Google Scholar 

  • Borovoi AG (2005) Multiple scattering of optical waves in media containing discrete scatterers. Doct. Thesis., Tomsk

    Google Scholar 

  • Borovoi AG (2006) Multiple scattering of short waves by uncorrelated and correlated scatterers. Light Scattering Rev 1:181–252

    Article  Google Scholar 

  • Borovoi A, Kustova N (2006) Statistical approach to light scattering by convex ice crystals. Opt Lett 31:1747–1749

    Article  ADS  Google Scholar 

  • Borovoi AG, Burnashov AV, Cheng AYS (2007) Light scattering by horizontally oriented ice crystal plates. J Quant Spectrosc Radiat Transfer 106(1):11–20

    Article  ADS  Google Scholar 

  • Borovoi AG, Kustova NV (2010) Light scattering by large faceted particles. In: Polarimetric, Detection, and Remote Sensing. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Borovoi AG (2013) Light scattering by large particles: physical optics and the shadow-forming field. Light Scattering Rev 8:115–138

    Google Scholar 

  • Brosseau C (1995) Evolution of the Stokes parameters in optically anisotropic media. Opt Lett 20:1221–1223

    Article  ADS  Google Scholar 

  • Cairns B, Waquet F, Knobelspiesse K, Chowdhary J, Deuze J- L (2010) Polarimetric remote sensing of aerosols over land surfaces. In: Satellite Aerosol Rmote Sensing Over Land, eds A. A. Kokhanovsky and G. de Leeuw (Chichester: pringer-Praxis), 295–325

    Google Scholar 

  • Chandrasekhar S (1960) Radiative transfer. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Chandrasekhar S (1977) Liquid crystals. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Cheng TH, Gu XF, Xie DH, Li ZQ, Yu T, Chen XF (2011) Simultaneous retrieval of aerosol optical properties over the Pearl River Delta, China using multi-angular, multi-spectral, and polarized measurements. Remote Sens Env 115:1643–1652. https://doi.org/10.1016/j.rse.2011.02.020

    Article  ADS  Google Scholar 

  • de Gennes PG (1974) The Physics of Liquid Crystals. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Dlugach JM, Mishchenko MI, Liu L, Mackowski DV (2011) Numerically exact computer simulations of light scattering by densely packed, random particulate media 112(13):2068–2078

    Google Scholar 

  • Dolginov AZ, Gnedin YuN Silant’ev NA (1970) J Quant Spectrosc Radiat Transfer 10:707

    Google Scholar 

  • Dolginov AZ, Gnedin YuN, Silant’ev NA (1975) Photon polarization and frequency change in multiple scattering. J Quant Spectrosc Radiat Transfer 10:707–754

    Article  MathSciNet  ADS  Google Scholar 

  • Dolginov AZ, Gnedin YuN, Silant’ev NA (1995) Propagation and Polarization of Radiation in Cosmic Media (Gordon and Breach, Basel). (Original Russian edition: Nauka, Moscow, 1979.)

    Google Scholar 

  • Dubovik O, Herman M, Holdak A, Lapyonok T, Tanré D, Deuzé JL, et al (2011) Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos Meas Tech 4:975–1018; doi:10.5194

    Google Scholar 

  • Dullemond K, Peeters K (1991–2010) Introduction to Tensor Calculus, Copyright 1991–2010, English translation 2008–2010; www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor/tensor.pdf

  • Dzyaloshinskii LE (1960) On the magnetoelectrical effect in antiferromagnetics. Soviet Phys JETP 10:628–669 (in Russian)

    MathSciNet  Google Scholar 

  • Farrell R, Rouseff AD, McCally RL (2005) Propagation of polarized light through two- and three-layer anisotropic stacks. J Opt Soc Am A 22:1981–1992

    Article  MathSciNet  ADS  Google Scholar 

  • Faure R, Kaufmann AM, Denis-Papin M (1964) Mathematiques Nouvelles. Dunod, Paris

    Google Scholar 

  • Fedorov FI (1976) Theory of the gyrotropy. Minsk, Nauka i Technika (in Russian)

    Google Scholar 

  • Fedorov FI, Philippov VV (1976) Reflection and refraction of light by transparent crystals. Minsk, Nauka i Tekhnika (in Russian)

    Google Scholar 

  • Foldy LL (1945) The multiple scattering of waves. Phys Rev 67:107–119

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Gao M, You Y, Yang P, Kattawar GW (2012) Backscattering properties of small layered plates: a model for iridosomes, OPTICS EXPRESS, 20(22)

    Google Scholar 

  • Gao M, Yang P, Kattawar GW (2013) Polarized extinction properties of plates with large aspect ratios. J Quant Spectrosc Radiat Transfer 131:72–81

    Article  ADS  Google Scholar 

  • Germogenova TA (1985) On the inverse problems of atmosphere optics. Sov Dokl 285:5 (in Russian)

    Google Scholar 

  • Germogenova TA, Konovalov NV, Kuzmina MG (1989) The mathematical foundations of polarized radiation transport theory (strict results). In the issue Invariance Principle and Its Applications, Proceedings of the Symposium, Oct. 26–30, 1981, Buarakan., Erevan, Armenia; 271–284

    Google Scholar 

  • Ghosh N, Wood MFG, Vitkin IA (2008) Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J Biomed Opt 13(4):044036

    Article  Google Scholar 

  • Giden IH, Turduev M, Kurt H (2014) Reduced symmetry and analogy to chirality in periodic dielectric media. Opt Soc J Europ Opt Soc Public 9:14045i

    Google Scholar 

  • Ginzburg VL, Rukhadze AA (1975) Waves in magneto-active plasma. Nauka, Moscow, 1975 (in Russian)

    Google Scholar 

  • Grishin IA (2004) Light scattering on ice crystals typical for cirrus. Doctor Thesis. (150 p), (in Russian)

    Google Scholar 

  • Hasekamp OP, Litvinov P, Butz A (2011) Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements. J Geophys Res 116:D14204; doi:https://doi.org/10.1029/2010JD015469

  • Hovenier JW (Ed) (1996) Light scattering by non-spherical particles. J Quant Spectrosc Radiat Transf 55:535–694

    Google Scholar 

  • Hovenier JW, van der Mee C, Domke H (2004) Transfer of polarized light in planetary atmospheres. Kluwer, Dordrecht

    Book  Google Scholar 

  • Van de Hulst HC (1957) Light scattering by small particles. Wiley, New York

    Google Scholar 

  • Van de Hulst HC (1980) Multiple light scattering. Academic Press, New York

    Google Scholar 

  • Ishimaru A (1978) Wave Propagation and Scattering in Random Media, vol. 1 and 2, N Y, Acad. Prèss (574 p)

    Google Scholar 

  • Ishimaru A, Lesselier D, Yeh C (1984) Multiple scattering calculations for nonspherical particles based on the vector radiative transfer theory. Radio Sci. 19:1356–1366

    Article  ADS  Google Scholar 

  • Katsev IL, Prikhach AS, Zege EP, Ivanov AP, Kokhanovsky AA (2009) Iterative procedure for retrieval of spectral aerosol optical thickness and surface reflectance from satellite data using fast radiative transfer code and ts application to MERIS measurements. In: Kokhanovsky AA, de Leeuw G. (Eds), Satellite Aerosol Remote Sensing ver L. Springer-Praxis, Berlin, pp 101–134

    Google Scholar 

  • Kiasat Y, Szabo Z, Chen X, Li E (2011) Light interaction with multilayer arbitrary anisotropic structure: an explicit analytical solution and application for subwavelength imaging. JQSAB

    Google Scholar 

  • Knobelspiesse K, Cairns B, Redemann J, Bergstrom RW, Stohl A (2011) Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign. Atmos Chem Phys 11:6245–6263. https://doi.org/10.5194/acp-11-6245-2011

    Article  ADS  Google Scholar 

  • Kokhanovsky AA (1998) On light scattering in random media with large densely packed particles. J Geophys Res D 103:6089–6096

    Article  Google Scholar 

  • Kokhanovsky AA (1999a) Radiative transfer in chiral random media. Phys Rev E 60(4):4899–4907

    Article  ADS  Google Scholar 

  • Kokhanovsky AA (1999b) Light scattering media optics: problems and solutions. Wiley-Praxis, Chichester

    Google Scholar 

  • Kokhanovsky AA (2000) The tensor radiative transfer equation. J Phys A: Math Gen 33:4121–4128

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Kokhanovsky AA (2003) Optical properties of irregularly shaped particles. J Phys D36:915–923

    ADS  Google Scholar 

  • Kokhanovsky AA (2004) Optical properties of terrestrial clouds. Earth-Sci Rev 64:189–241

    Article  ADS  Google Scholar 

  • Kokhanovsky AA, Zege EP (2004) Scattering optics of snow. Appl Opt 43:1589–1602

    Article  ADS  Google Scholar 

  • Kokhanovsky AA (2005a) Reflection of light from particulate media with irregularly shaped particles. J Quant Spectr Rad Transfer 96:1–10

    Article  ADS  Google Scholar 

  • Kokhanovsky AA (2005b) Phase matrix of ice crystals in noctilucent clouds. Proc SPIE 5829:44–52

    Article  ADS  Google Scholar 

  • Kokhanovsky AA (2006) Cloud optics. Springer, Dordrecht, p 2006

    Book  Google Scholar 

  • Kokhanovsky AA, Deuzé JL, Diner DJ, Dubovik O, Ducos Emde C et al (2010) The intercomparison of major aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light. Atmos Meas Tech 3:909–932. doi:https://doi.org/10.5194/amt-3-909-2010

  • Kokhanovsky AA (2011) Solar radiation transport in clouds and snow cover and its application to the problems satellite Earth Remote sensing, Doct. Thesis, St. Petersburg

    Google Scholar 

  • Kokhanovsky AA (2015) The modern aerosol retrieval algorithms based on the simultaneous measurements of the intensity and polarization of reflected solar light: a review, Frontiers in Environmental Science, 3

    Google Scholar 

  • Kong JA (1974) Optics of bianisotropic media. J Opt Soc Am 64(10):1304–1308

    Google Scholar 

  • Kong JA (1990) Electromagnetic waves theory, 2nd edn. Wiley Interscience Publising. John Wiley and Sons Inc, New York

    Google Scholar 

  • Kravtsov YuA, Bieg B, Bliokh KYu (2007) Stokes-vector evolution in a weakly anisotropic inhomogeneous medium, arxiv.org/pdf/0705.4450

    Google Scholar 

  • Kravtsov YuA, Bieg B (2010) Propagation of electromagnetic waves in wearly anisotropic media: theory and applications. Optica Applicata XL(4)

    Google Scholar 

  • Kravtsov YuA, Orlov YuI (1990) Geometrical optics of inhomogeneous media. Springer Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  • Kurt H, Turduev M, Giden IH (2012) Crescent shaped dielectric periodic structure for light manipulation. Opt Express 20:7184–7194

    Article  ADS  Google Scholar 

  • Kuzmina MG (1976) Polarized radiation transport equation in anisotropic media, Preprint KIAM-68, (in Russian)

    Google Scholar 

  • Kuzmina MG (1978) General functional properties of polarized radiation transport equation. Sov Docl 238:314–317 (in Russian)

    Google Scholar 

  • Kuzmina MG (1986a) To the formulation of polarized radiation transfer problems for slabs of optically active media, Preprint KIAM-110, (in Russian)

    Google Scholar 

  • Kuzmina MG (1986b). Polarized radiation transport in slabs of optically active media, Preprint KIAM-123, (in Russian)

    Google Scholar 

  • Kuzmina MG (1987) The perturbation method in transport problems for optically active media, Preprint KIAM-9, (in Russian)

    Google Scholar 

  • Kuzmina MG (1989) The perturbation method in radiation transfer problems for slabs of optically active media. Sov Dokl 308:335–341

    Google Scholar 

  • Kuzmina MG (1991) A perturbation method and Stokes parameters estimates in polarized radiation transfer problems in the slabs of optically active media. TTSP 20(1):69–81

    MATH  ADS  Google Scholar 

  • Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Addison–Wesley, Reading, Mass

    Google Scholar 

  • Larin KV, Motamedi M, Eledrisi MS, Esenaliev RO (2002) Noninvasive blood glucose monitoring with optical coherence tomography. Diabetes Care 25:2263–2267

    Article  Google Scholar 

  • Lax M (1951) Multiple scattering of waves. Rev Mod Phys 23:287–310

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Linder T (2014) Light Scattering in Fiber-based Materials. A foundation for characterization of structural properties, Doct. Thesis, Dept. of Computer Science, Electrical and Space Engineering Lule˚a University of Technology Lule˚a, Sweden

    Google Scholar 

  • Liou KN, Takano Y, Yang P (2011) Light absorption and scattering by aggregates: application to black carbon and snow grains. JQSRT 112:1581–1594

    Article  ADS  Google Scholar 

  • Liou KN (2002) An introduction to atmospheric radiation, 2nd ed. Academic Press, San Diego, USA

    Google Scholar 

  • Liou KN (1992) Radiation and cloud processes in the atmosphere: theory, observation, and modeling. Oxford University Press, New York

    Google Scholar 

  • Liu J, Kattawar GW (2013) Detection of dinoflagellates by the light scattering properties of the chiral structure of their chromosomes. J Quant Spectrosc Radiat Transfer 131:24–33

    Article  ADS  Google Scholar 

  • Maslennikov MV (1968, 1969). The Milne problem with anisotropic scattering, Proc. Steklov Inst. of Math., 97, 1968 (in Russian); Amer. Math. Soc., Providence, Rhode Island, 1969

    Google Scholar 

  • Menyuk CR (1988) Stability of solitons in birefringent optical fibers. II. Arbitrary amplitudes, J of the Opt Soc of Am B 5(2):392–402

    Google Scholar 

  • Marinyuk VV, Dlugach JM, Yanovitskij EG (1992) Multiple light scattering by polydispersions of randomly distributed, perfectly aligned Mie cylinders illuminated perpendicularly to their axes. J Quant Spectrosc Radiat Transfer 47:401–410

    Article  ADS  Google Scholar 

  • Marshak A, Davis AB (eds) (2005) 3D radiative transfer in cloudy atmospheres. Springer, Berlin

    Google Scholar 

  • Maruo K, Tsurugi M, Chin J, Ota T, Arimoto H, Yamada Y, Tamura M, Ishii M, Ozaki Y (2003) Noninvasive blood glucose assay using a newly developed near-infrared system. IEEE J Sel Top Quantum Electron 9:322–330

    Article  Google Scholar 

  • Mishchenko MI (1994a) Transfer of polarized infrared radiation in optically anisotropic media: application to horizontally oriented ice crystals: comment. J Opt Soc Am A 11:4

    Google Scholar 

  • Mishchenko MI (1994b) Asymmetry parameters of the phase function for densely packed scattering grains. JQSRT 52:95–110

    Article  ADS  Google Scholar 

  • Mishchenko MI, Hovenier JW, Travis LD (Eds), (2000). Light Scattering by Nonspherical Particles. Theory, Measurements, and Applications, Academic Press

    Google Scholar 

  • Mishchenko MI (2002) Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Appl Opt 41:7114–7134

    Article  ADS  Google Scholar 

  • Mishchenko MI (2003) Microphysical approach to polarized radiative transfer: extension to the case of an external observation point. Appl Opt 42:4963–4967

    Article  ADS  Google Scholar 

  • Mishchenko MI (2014a) Electromagnetic scattering by particles and particle groups: an introduction. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Mishchenko MI (2014b) Light propagation in a two-dimensional medium with large inhomogeneities. J Opt Soc Am A 32:1330–1336

    Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, Absorption and Emission of Light by Small Particles. Cambridge University Press, Cambridge

    Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2006) Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Mishchenko MI (2011) Directional radiometry and radiative transfer: a new paradigm. J Quant Spectrosc Radiat Transf 112:2079–2094

    Article  ADS  Google Scholar 

  • Mishchenko MI, Tishkovets VP, Travis LD et al (2011) Electromagnetic scattering by a morphologically complex object: fundamental concepts and common misconceptions. J Quant Spectrosc Radiat Transf 112:671–692

    Article  ADS  Google Scholar 

  • Mishchenko MI (2008a) Multiple scattering by particles embedded in an absorbing medium. 1. Foldy-Lax equations, order-of-scattering expansion, and coherent field. Opt Express 16:2288–2301

    Article  ADS  Google Scholar 

  • Mishchenko MI (2008b) b). Multiple scattering by particles embedded in an absorbing medium. 2. Radiative transfer equation. J Quant Spectrosc Radiat Transf 109:2386–2390

    Article  ADS  Google Scholar 

  • Mishchenko MI, Liu L, Mackowski DV, Cairns B, Videen G (2007) Multiple scattering by random particulate media: exact 3D results. Opt Express 15:2822–2836

    Article  ADS  Google Scholar 

  • Mishchenko MI, Dlugach JM, Yanovitskij EG (1992) Multiple light scattering by polydispersions of randomly distributed, perfectly aligned Mie cylinders illuminated perpendicularly to their axes. J Quant Spectrosc Radiat Transfer 47:401–410

    Article  ADS  Google Scholar 

  • Mishchenko MI (2010) The Poynting-Stokes tensor and radiative transfer in discrete random media: the microphysical paradigm. Opt Express 18:19770–19791

    Article  ADS  Google Scholar 

  • Mishchenko MI, Dlugach JM, Yurkin MA, Bi L, Cairns B, Liu L, Panetta RL, Travis LD, Yang P, Zakharova NT (2016a) First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media. Phys Rep 632:1–75

    Article  MathSciNet  ADS  Google Scholar 

  • Mishchenko MI, Dlugach JM, Zakharova NT (2016b) Demonstration of numerical equivalence of ensemble and spectral averaging in electromagnetic scattering by random particulate media. J Opt Soc Am A 33:618–624

    Article  ADS  Google Scholar 

  • Munneke PK (2009). Snow, ice and solar radiation, Institute of Marine and Atm. Research Utrecht (IMAU); Dept. of Physics and Astronomy, Faculty of Sci., Utrecht University

    Google Scholar 

  • Newton RG (1982) Scattering theory of waves and particles, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Nikolaeva OV, Bass LP, Germogenova TA, Kuznetsov VS (2007) Algorithms to calculation of radiative fields from localized sources via the Code Raduga-5.1(P). Transport Theory Stat Phy 36(4–6):439–474

    Google Scholar 

  • Okada Y, Kokhanovsky AA (2009) Light scattering and absorption by densely packed groups of spherical particles. JQSRT 110:902–917

    Article  ADS  Google Scholar 

  • Prigarin SM, Boovoi AG, Buscaglioni P, Cohen A, Grishin IA, Oppel UG, Zhuravleva TB (2005) Monte Carlo simulation of radiation transfer in optically anisotropic clouds. Proc SPIE 5829:88–94

    Article  ADS  Google Scholar 

  • Prigarin SM, Oppel UG (2005) A hypothesis of ’fractal’ optical anisotropy in clouds and Monte Carlo simulation of relative radiation effects. Proc SPIE 5829:102–108

    Article  ADS  Google Scholar 

  • Prigarin SM, Borovoi AG, Grishin IA, Oppel UG (2007) Monte Carlo simulation of radiation transfer in optically anisotropic crystal clouds, Atmos Oceanic Opt. 20(3):183–188

    Google Scholar 

  • Prigarin SM, Borovoi AG, Grishin IA, Oppel UG (2008) Monte Carlo simulation of halos in crystal clouds, XV International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics”, June 22–28, 2008, Krasnoyarsk. Abstracts. p 109

    Google Scholar 

  • Randrianalisoa J, Baillis D (2010) Radiative properties of densely packed spheres in semitransparent media: A new geometric optics approach. JQSRT 111(10):1372–1388

    Google Scholar 

  • Rogovtsov NN, Borovik FN (2009) The characteristic equation of radiative transfer theory. In: Kokhanovsky AA (Eds) Light Scattering Reviews, vol 4. Springer-Praxis Publishing, Chichester, UK, pp 47–429

    Google Scholar 

  • Rogovtsov NN (2015a) Constructive theory of scalar characteristic equations of the theory of radiation transport: I Basic assertions of theory and conditions for the applicability of truncation method. Differen Equat 51:268–281

    Article  MathSciNet  MATH  Google Scholar 

  • Rogovtsov NN (2015b) Constructive theory of scalar characteristic equations of the theory of radiation transport: II Algorithms for finding solutions and their analytic representations. Differen Equat 51:661–273

    Google Scholar 

  • Rogovtsov NN, Borovik FN (2016) Application of general invariance relations reduction method to solution of radiation transfer problems. J Quant Spectrosc Radiat Transfer 183:128–153

    Article  MATH  ADS  Google Scholar 

  • Roux L, Mareschal P, Vukadinovic N, Thibaud J-B, Greffet JJ (2001) Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation. J Opt Soc Am A 18:374–384

    Article  MathSciNet  ADS  Google Scholar 

  • Rosenberg GV (1955) Usp Fiz Nauk 61:77

    Article  Google Scholar 

  • Rudin W (1976) Principles of mathematical analysis, 3rd ed. McGraw Hill

    Google Scholar 

  • Rytov SM, Kravtsov YuA, Tatarsky VI (1978) Introduction to statistical radiophysics: random fields. Fizmat, Moscow (in Russian)

    Google Scholar 

  • Shefer O (2013) Numerical study of extinction of visible and infrared radiation transformed by preferentially oriented plate crystals. J Quant Spectrosc Radiat Transfer 117:104–113

    Article  ADS  Google Scholar 

  • Shefer O (2016) Extinction of radiant energy by large atmospheric crystals with different shapes. J Quant Spectrosc Radiat Transfer 178:350–360

    Article  ADS  Google Scholar 

  • Stamnes J, Sithambaranathan GS (2001) Reflection and refraction of an arbitrary electromagnetic wave at a plane interface separating anisotropic and a biaxial medium. J Opt Soc Am A 22:3119–3129

    Article  ADS  Google Scholar 

  • Takano Y, Liou KN (1989) Solar radiative transfer in cirrus clouds. Part II: theory and computations of multiple scattering in a anisotropic medium. J of Atm Sci 46(3)

    Google Scholar 

  • Takano Y, Liou KL (1993) Transfer of polarized infrared radiation in optically anisotropic media: application to horizontally oriented ice crystals. J Opt Soc Am A 10:1243–1256

    Article  ADS  Google Scholar 

  • Tishkovets V, Mishchenko MI (2004) Coherent backscattering of light by a layer of discrete random media. JQSRT 86:161

    Article  ADS  Google Scholar 

  • Tsang L, Ding K-H (1991) Polametric signatures of a layer of random nonspherical discrete scatterers overlying a homogeneous half-space based on first- and second-order vector radiative transfer theory. IEEE Trans Geosci Remote Sens 29:242–253

    Article  ADS  Google Scholar 

  • Tsang L, Kong JA (2001) Scattering of electromagnetic waves. John Wiley and Sons, Inc

    Google Scholar 

  • Tsang L, Pan J, Liang D, Li Z (2011) Modeling Active Microwave Remote Sensing of Snow Using Dense Media Radiative Transfer (DMRT) Theory with Muftiple Scattering Effects. IEEE Trans Geoscience Remote Sensing 45(4)

    Google Scholar 

  • Tsang L, Pan J, Liang D, Li Z, Cline DW, Tan Y (2007) Modeling active microwave remote sensing of snow using dense media radiative transfer (DMRT) theory With Multiple-Scattering Effects. IEEE Trans Geosci 45(4)

    Google Scholar 

  • Tse KK, Tsang L, Chan CH, Ding KH, Leung KW (2007) Multiple scattering of waves by dense random distributions of sticky particles for applications in microwave scattering by terrestrial snow. Radio Sci. 42:RS5001

    Google Scholar 

  • Tseng S (2008) Optical characteristics of a cluster of closely-packed dielectric spheres. Opt Commun 281:1986–1990

    Article  ADS  Google Scholar 

  • Volkovitski OA, Pavlova LN, Petrushin AG (1984) Optical properties of crystal clouds. Gidrometeoizdat, Leningrad (in Russian)

    Google Scholar 

  • Watson KM (1953) Multiple scattering and the many-body problem—applications to photomeson production in complex nuclei. Phys Rev 89:575–587

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Watson KM (1969) Multiple scattering of electromagnetic waves in an underdense plasma. J Math Phys 10:688–702

    Article  ADS  Google Scholar 

  • Wiscombe WJ, Warren SG (1980) A model for the spectral albedo of snow. I: Pure snow. J Atmos Sci 37:2712–2733

    Article  ADS  Google Scholar 

  • Wood MFG, Guo X, Vitkin IA (2007) Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology. J Biomed Opt 121

    Google Scholar 

  • Xie Y, Yang P, Kattawar GW, Baum BA, Hu Y (2011) Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds. Appl Opt 50:1065–1081

    Article  ADS  Google Scholar 

  • Yariv A, Yeh P (1984) Optical waves in crystals. Wiley, New York

    Google Scholar 

  • Yeh P (1979) Electromagnetic propagation in birefringent layered media. J Opt Soc Am 69:742–755

    Article  MathSciNet  ADS  Google Scholar 

  • Yeh P (1980) Optics of anisotropic layered media: A New 4 × 4 matrix algebra. Surf Sci 96:41–53

    Article  ADS  Google Scholar 

  • Zege EP, Chaikovskaya LI (1984) Optics and Spectroskopy 5:1060

    Google Scholar 

  • Zege EP, Ivanov AP, Katsev IL (1991) Image transfer through a scattering medium. Springer, Berlin

    Book  Google Scholar 

  • Zheleznyakov VV (1996) Radiation in Astrophysical Plasma. Kluwer

    Google Scholar 

  • Zheleznyakov VV (1977) Electromagnetic waves in cosmic plasma. Nauka, Moscow

    Google Scholar 

Download references

Acknowlegements

The work has been supported by the Fund of Fundamental Research RAS, the Department of Mathematical Sciences, Project 1.3.2, the Program #3.

Our heartfelt thanks to A.A Kokhanovsky for his kind suggestion to prepare this review. Our great thanks also to three anonymous reviewers for their helpful remarks and comments on the manuscript.

One of the authors (M.G.K) is greatly thankful for many remarkable researchers on radiation transport theory for interesting and helpful discussions on various aspects of polarized radiation transfer in due time. These are M.V. Maslennikov (who for a long time was the chief of the Department of kinetic equations of Keldysh Institute of Applied Mathematics, RAS (KIAM RAS), and also the organizer and the head of regularly running seminar on kinetic equations at KIAM RAS), T.A. Germogenova, N.V. Konovalov (KIAM RAS), G.V. Rosenberg, V.I. Tatarsky, Yu.N. Barabanenkov, Yu.N. Gnedin, N.A. Silant’ev, H. Domke, E.P. Zege, L.I. Chaikovskaya, and many others. It is also a great pleasure to thank T. Nishida, K. Asano and the participants of the seminar on nonlinear equations of the Department of Mathematics, Kyoto University, for interesting and helpful discussion on the VRTE properties for optically anisotropic media (1989).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita G. Kuzmina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuzmina, M.G., Bass, L.P., Nikolaeva, O.V. (2018). Polarized Radiative Transfer in Optically Active Light Scattering Media. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-319-70808-9_1

Download citation

Publish with us

Policies and ethics