Skip to main content

Advances in MDCT and MRI of Renal Emergencies

  • Chapter
  • First Online:
MDCT and MR Imaging of Acute Abdomen

Abstract

Acute renal conditions account for a notable volume of Emergency Department visits and often lead to imaging. Urolithiasis is the most commonly encountered etiology but a wide range of conditions including infection, inflammation, and hemorrhage can also cause acute pain. Ultrasound and computed tomography (CT) are the most commonly utilized imaging modalities for the kidneys while the role of dual-energy CT is expanding as a problem-solving tool. Management of acute renal conditions ranges from emergent intervention to medical management and may be determined by the imaging findings. Therefore, accurate and timely diagnoses are critical to expedite appropriate clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearle MS, Calhoun EA, Curhan GC. Urologic diseases in America project: urolithiasis. J Urol. 2005;173(3):848–57.

    Article  Google Scholar 

  2. Scales CD Jr, Curtis LH, Norris RD, et al. Changing gender prevalence of stone disease. J Urol. 2007;177(3):979–82.

    Article  Google Scholar 

  3. Bartoletti R, Cai T, Mondaini N, et al. Epidemiology and risk factors in urolithiasis. Urol Int. 2007;79(Suppl 1):3–7.

    Article  Google Scholar 

  4. Bihl G, Meyers A. Recurrent renal stone disease-advances in pathogenesis and clinical management. Lancet. 2001;358(9282):651–6.

    Article  CAS  Google Scholar 

  5. Coe FL, Parks JH, Asplin JR. The pathogenesis and treatment of kidney stones. N Engl J Med. 1992;327(16):1141–52.

    Article  CAS  Google Scholar 

  6. Kielar AZ, Shabana W, Vakili M, et al. Prospective evaluation of Doppler sonography to detect the twinkling artifact versus unenhanced computed tomography for identifying urinary tract calculi. J Ultrasound Med. 2012;31(10):1619–25.

    Article  Google Scholar 

  7. Masch WR, Cohan RH, Ellis JH, et al. Clinical effectiveness of prospectively reported sonographic twinkling artifact for the diagnosis of renal calculus in patients without known urolithiasis. AJR Am J Roentgenol. 2016;206(2):326–31.

    Article  Google Scholar 

  8. Moesbergen TC, de Ryke RJ, Dunbar S, et al. Distal ureteral calculi: US follow-up. Radiology. 2011;260(2):575–80.

    Article  Google Scholar 

  9. Ripolles T, Martinez-Perez MJ, Vizuete J, et al. Sonographic diagnosis of symptomatic ureteral calculi: usefulness of the twinkling artifact. Abdom Imaging. 2013;38(4):863–9.

    Article  Google Scholar 

  10. Cheng PM, Moin P, Dunn MD, et al. What the radiologist needs to know about urolithiasis: part 1—pathogenesis, types, assessment, and variant anatomy. AJR Am J Roentgenol. 2012;198(6):W540–7.

    Article  Google Scholar 

  11. Van Arsdalen KN. Pathogenesis of renal calculi. Urol Radiol. 1984;6(2):65–73.

    Article  Google Scholar 

  12. Garcia Marchinena P, Billordo Peres N, Liyo J, et al. CT scan as a predictor of composition and fragility of urinary lithiasis treated with extracorporeal shock wave lithotripsy in vitro. Arch Esp Urol. 2009;62(3):215–22. discussion 22

    Article  Google Scholar 

  13. Guest AR, Cohan RH, Korobkin M, et al. Assessment of the clinical utility of the rim and comet-tail signs in differentiating ureteral stones from phleboliths. AJR Am J Roentgenol. 2001;177(6):1285–91.

    Article  CAS  Google Scholar 

  14. Traubici J, Neitlich JD, Smith RC. Distinguishing pelvic phleboliths from distal ureteral stones on routine unenhanced helical CT: is there a radiolucent center? AJR Am J Roentgenol. 1999;172(1):13–7.

    Article  CAS  Google Scholar 

  15. Marcovich R, Smith AD. Renal pelvic stones: choosing shock wave lithotripsy or percutaneous nephrolithotomy. Int Braz J Urol. 2003;29(3):195–207.

    Article  Google Scholar 

  16. Massoud AM, Abdelbary AM, Al-Dessoukey AA, et al. The success of extracorporeal shock-wave lithotripsy based on the stone-attenuation value from non-contrast computed tomography. Arab J Urol. 2014;12(2):155–61.

    Article  Google Scholar 

  17. Williams JC Jr, Saw KC, Paterson RF, et al. Variability of renal stone fragility in shock wave lithotripsy. Urology. 2003;61(6):1092–6. discussion 7

    Article  Google Scholar 

  18. Acharya S, Goyal A, Bhalla AS, et al. vivo characterization of urinary calculi on dual-energy CT: going a step ahead with sub-differentiation of calcium stones. Acta Radiol. 2015;56(7):881–9.

    Article  Google Scholar 

  19. Duan X, Li Z, Yu L, et al. Characterization of urinary stone composition by use of third-generation dual-source dual-energy CT with increased spectral separation. AJR Am J Roentgenol. 2015;205(6):1203–7.

    Article  Google Scholar 

  20. Fung GS, Kawamoto S, Matlaga BR, et al. Differentiation of kidney stones using dual-energy CT with and without a tin filter. AJR Am J Roentgenol. 2012;198(6):1380–6.

    Article  Google Scholar 

  21. Hidas G, Eliahou R, Duvdevani M, et al. Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with X-ray diffraction. Radiology. 2010;257(2):394–401.

    Article  Google Scholar 

  22. Li XH, Zhao R, Liu B, et al. Determination of urinary stone composition using dual-energy spectral CT: initial in vitro analysis. Clin Radiol. 2013;68(7):e370–7.

    Article  Google Scholar 

  23. Spek A, Strittmatter F, Graser A, et al. Dual energy can accurately differentiate uric acid-containing urinary calculi from calcium stones. World J Urol. 2016;34(9):1297–302.

    Article  CAS  Google Scholar 

  24. Stolzmann P, Kozomara M, Chuck N, et al. vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom Imaging. 2010;35(5):629–35.

    Article  Google Scholar 

  25. Thomas C, Patschan O, Ketelsen D, et al. Dual-energy CT for the characterization of urinary calculi: in vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol. 2009;19(6):1553–9.

    Article  CAS  Google Scholar 

  26. Zhang GM, Sun H, Xue HD, et al. Prospective prediction of the major component of urinary stone composition with dual-source dual-energy CT in vivo. Clin Radiol. 2016;71(11):1178–83.

    Article  Google Scholar 

  27. Czaja CA, Scholes D, Hooton TM, et al. Population-based epidemiologic analysis of acute pyelonephritis. Clin Infect Dis. 2007;45(3):273–80.

    Article  Google Scholar 

  28. Hooton TM. The current management strategies for community-acquired urinary tract infection. Infect Dis Clin North Am. 2003;17(2):303–32.

    Article  Google Scholar 

  29. June CH, Browning MD, Smith LP, et al. Ultrasonography and computed tomography in severe urinary tract infection. Arch Intern Med. 1985;145(5):841–5.

    Article  CAS  Google Scholar 

  30. Vourganti S, Agarwal PK, Bodner DR, et al. Ultrasonographic evaluation of renal infections. Radiol Clin North Am. 2006;44(6):763–75.

    Article  Google Scholar 

  31. Chan JH, Tsui EY, Luk SH, et al. MR diffusion-weighted imaging of kidney: differentiation between hydronephrosis and pyonephrosis. Clin Imaging. 2001;25(2):110–3.

    Article  CAS  Google Scholar 

  32. Cova M, Squillaci E, Stacul F, et al. Diffusion-weighted MRI in the evaluation of renal lesions: preliminary results. Br J Radiol. 2004;77(922):851–7.

    Article  CAS  Google Scholar 

  33. Falagas ME, Alexiou VG, Giannopoulou KP, et al. Risk factors for mortality in patients with emphysematous pyelonephritis: a meta-analysis. J Urol. 2007;178(3 Pt 1):880–5. quiz 1129

    Article  Google Scholar 

  34. Huang JJ, Tseng CC. Emphysematous pyelonephritis: clinicoradiological classification, management, prognosis, and pathogenesis. Arch Intern Med. 2000;160(6):797–805.

    Article  CAS  Google Scholar 

  35. Wan YL, Lo SK, Bullard MJ, et al. Predictors of outcome in emphysematous pyelonephritis. J Urol. 1998;159(2):369–73.

    Article  CAS  Google Scholar 

  36. Wan YL, Lee TY, Bullard MJ, et al. Acute gas-producing bacterial renal infection: correlation between imaging findings and clinical outcome. Radiology. 1996;198(2):433–8.

    Article  CAS  Google Scholar 

  37. Chen MT, Huang CN, Chou YH, et al. Percutaneous drainage in the treatment of emphysematous pyelonephritis: 10-year experience. J Urol. 1997;157(5):1569–73.

    Article  CAS  Google Scholar 

  38. Kangjam SM, Irom KS, Khumallambam IS, et al. Role of conservative management in emphysematous pyelonephritis—a retrospective study. J Clin Diagn Res. 2015;9(11):PC09–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsu JH, Chan CK, Chu RW, et al. Emphysematous pyelonephritis: an 8-year retrospective review across four acute hospitals. Asian J Surg. 2013;36(3):121–5.

    Article  Google Scholar 

  40. Craig WD, Wagner BJ, Travis MD. Pyelonephritis: radiologic-pathologic review. Radiographics. 2008;28(1):255–77. quiz 327-8

    Article  Google Scholar 

  41. Symeonidou C, Standish R, Sahdev A, et al. Imaging and histopathologic features of HIV-related renal disease. Radiographics. 2008;28(5):1339–54.

    Article  Google Scholar 

  42. Oesterling JE, Fishman EK, Goldman SM, et al. The management of renal angiomyolipoma. J Urol. 1986;135(6):1121–4.

    Article  CAS  Google Scholar 

  43. Sooriakumaran P, Gibbs P, Coughlin G, et al. Angiomyolipomata: challenges, solutions, and future prospects based on over 100 cases treated. BJU Int. 2010;105(1):101–6.

    Article  Google Scholar 

  44. Chandarana H, Megibow AJ, Cohen BA, et al. Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol. 2011;196(6):W693–700.

    Article  Google Scholar 

  45. Kaza RK, Platt JF. Renal applications of dual-energy CT. Abdom Radiol (NY). 2016;41(6):1122–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Chong M.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barkmeier, D., Chong, S. (2018). Advances in MDCT and MRI of Renal Emergencies. In: Patlas, M., Katz, D., Scaglione, M. (eds) MDCT and MR Imaging of Acute Abdomen. Springer, Cham. https://doi.org/10.1007/978-3-319-70778-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70778-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70777-8

  • Online ISBN: 978-3-319-70778-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics