Skip to main content

Study on Depression Classification Based on Electroencephalography Data Collected by Wearable Devices

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10654))

Abstract

Depression has become a disease, which may threaten millions of families’ well-being. The current method of screening depression is subjective, labor-consuming and costly. Study on Electroencephalogram (EEG) has become a new direction to explore an objective, low-cost and accurate method to detect depression. In this paper, three-electrode EEG data of 158 subjects (90 depressed and 68 normal control) in resting state, and under audio stimulation (positive and negative) were collected and processed. After feature selection using Sequential Floating Forward Selection (SFFS), four popular classification methods were applied and classification accuracies were verified using 10-fold cross validation. Results have shown the accuracy of classification will be improved when male and female are classified separately. The highest accuracy of male and female classification are 91.98%, 79.76%, respectively, compare to 77.43% when the classification is processed as gender-free. The effective depressive features of male and female are also different, which may be caused by the differences of brain structure. This research suggests a possible pervasive method of depression classification for future clinical application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Depression. [EB/OL]. http://www.who.int/mediacentre/factsheets/fs369/en/

  2. Moruzzi, G., Magoun, H.W.: Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1(1–4), 455–473 (1949)

    Article  Google Scholar 

  3. Gloor, P.: Discoverer of the brain wave. Science 168, 562–563 (1970). (Book reviews: Hans Berger on the electroencephalogram of man. The fourteen original reports on the human electroencephalogram)

    Article  Google Scholar 

  4. Ahmadlou, M., Adeli, H.: Spatiotemporal analysis of relative convergence of EEGs reveals differences between brain dynamics of depressive women and men. Clin. EEG Neurosci. 44(3), 175 (2013)

    Article  Google Scholar 

  5. Mantini, D., Perrucci, M.J., Del, G.C., Romani, G.L., Corbetta, M.: Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. USA 104(32), 13170 (2007)

    Article  Google Scholar 

  6. Marple, S.L.J.: A tutorial overview of modern spectral estimation, vol. 4, pp. 2152–2157 (1989)

    Google Scholar 

  7. Knott, V., Mahoney, C., Kennedy, S., et al.: EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. Neuroimaging 106(2), 123–140 (2001)

    Article  Google Scholar 

  8. Pollock, V.E., Schneider, L.S.: Quantitative, waking EEG research on depression. Biol. Psychiatry 27(7), 757–780 (1990)

    Article  Google Scholar 

  9. Iznak, A.F., Iznak, E.V., Sorokin, S.A.: Changes in EEG and reaction times during the treatment of apathetic depression. Neurosci. Behav. Physiol. 43(1), 79–83 (2013)

    Article  Google Scholar 

  10. Bachmann, M., Lass, J., Suhhova, A., et al.: Spectral asymmetry and Higuchi’s fractal dimension measures of depression electroencephalogram. Comput. Math. Methods Med. 2013 (2013). doi:10.1155/2013/251638

  11. Miller, A., Fox, N.A., Cohn, J.F., Forbes, E.E., Sherrill, J.T., Kovacs, M.: Regional patterns of brain activity in adults with a history of childhood-onset depression: gender differences and clinical variability. Am. J. Psychiatry 159(6), 934–940 (2002)

    Article  Google Scholar 

  12. Davidson, R.J., Schwartz, G.E., Pugash, E., Bromfield, E.: Sex differences in patterns of EEG asymmetry. Biol. Psychol. 4(2), 119–138 (1976)

    Article  Google Scholar 

  13. Trotman, S.C., Hammond, G.R.: Sex differences in task-dependent EEG asymmetries. Psychophysiology 16(5), 429 (1979)

    Article  Google Scholar 

  14. Jasper, H.H.: The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 10, 367–380 (1985)

    Google Scholar 

  15. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order crossings. IEEE Trans. Inf. Technol. Biomed. 14(2), 186 (2010). A Publication of the IEEE Engineering in Medicine & Biology Society

    Article  Google Scholar 

  16. Rai, G.S.: The mini-mental state examination. J. Am. Geriatr. Soc. 41(3), 346 (1993)

    Article  Google Scholar 

  17. Sheehan, D.V., Janavs, J., Baker, R., et al.: MINI-Mini international neuropsychiatric interview -English version 5.0.0-DSM-IV. J. Clin. Psychiatry 59, 34–57 (1998)

    Google Scholar 

  18. Kurt, M.D., Spitzer, R.L., Dsw, J.B.W.W.: The PHQ-9. J. Gen. Intern. Med. 16(9), 606–613 (2001)

    Article  Google Scholar 

  19. Fatourechi, M., Bashashati, A., Ward, R.K., Birch, G.E.: EMG and EOG artifacts in brain computer interface systems: a survey-clinical neurophysiology. Clin. Neurophysiol. 118(3), 480–494 (2007)

    Article  Google Scholar 

  20. International Affective Digital Sounds. [DB/OL]. https://www.iads.org/

  21. Stevenson, R.A., James, T.W.: Affective auditory stimuli: characterization of the International Affective Digitized Sounds (IADS) by discrete emotional categories. Behav. Res. Methods 40(1), 315–321 (2008)

    Article  Google Scholar 

  22. Lopes, F.M., Martins, D.C., Barrera, J., Cesar, R.M.: SFFS-MR: a floating search strategy for GRNs inference. In: Dijkstra, T.M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds.) PRIB 2010. LNCS, vol. 6282, pp. 407–418. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16001-1_35

    Chapter  Google Scholar 

  23. Huang, J., Shao, X., Wechsler, H.: Face pose discrimination using support vector machines (SVM). Int. Conf. Pattern Recognit. 1(4), 154–156 (1998)

    Google Scholar 

  24. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 986–996. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39964-3_62

    Chapter  Google Scholar 

  25. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  26. Meng, X.: Study on the fresh level analog of the meat with artificial neutral network. Chin. J. Spectrosc. Lab. 21(5), 970–973 (2004)

    Google Scholar 

  27. Quinlan, J.R.: Induction on decision tree. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  28. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. Int. Joint Conf. Artif. Intell. 14, 1137–1143 (1995)

    Google Scholar 

  29. Peng, H., Hu, B., Qi, Y., et al.: An improved EEG de-noising approach in electroencephalogram (EEG) for home care. In: International Conference on Pervasive Computing Technologies for Healthcare, pp. 469–474 (2011)

    Google Scholar 

  30. Beck, A.T., Steer, R.A., Garbin, M.G.: Psychometric properties of the Beck Depression inventory: twenty-five years of evaluation. Clin. Psychol. Rev. 8(1), 77–100 (1988)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Basic Research Program of China (973 Program) (No. 2014CB744600), the National Natural Science Foundation of China (Grant No. 61632014, No. 61210010), Program of Beijing Municipal Science & Technology Commission (No. Z171100000117005), the Program of International S&T Cooperation of MOST (No. 2013DFA11140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, H., Zhang, Y., Sha, X., Hu, B. (2017). Study on Depression Classification Based on Electroencephalography Data Collected by Wearable Devices. In: Zeng, Y., et al. Brain Informatics. BI 2017. Lecture Notes in Computer Science(), vol 10654. Springer, Cham. https://doi.org/10.1007/978-3-319-70772-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70772-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70771-6

  • Online ISBN: 978-3-319-70772-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics