Skip to main content

Validation and Equifinality

  • Chapter
  • First Online:
Computer Simulation Validation

Part of the book series: Simulation Foundations, Methods and Applications ((SFMA))

Abstract

In this chapter, the concept of equifinality of model representations is discussed, from a background of model applications in the environmental sciences. Equifinality in this context is used to indicate that there may be many different model structures, parameter sets and auxiliary conditions that might appear to give equivalent output predictions or acceptable fits to any observation data available for use in model calibration. This does not imply that the resulting ensemble of models will give similar predictions when used to predict the future under some changed conditions. As new information becomes available to allow model validation, this can be used to constrain the ensemble of models within a Bayesian updating framework, although epistemic sources of uncertainty can make it difficult to define appropriate likelihood measures. It seems likely that the equifinality concept will persist into the future in the form of ensembles of (stochastic ) model runs being used to estimate prediction uncertainties. However, more research is needed into the limitations of model structures , information content of data sets subject to epistemic uncertainties and means of evaluating and validating models in the inexact sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bertalanffy, L. von. (1951). An outline of general systems theory. British Journal for the Philosophy of Science, 1, 134–165.

    Google Scholar 

  • Bertalanffy, L. von. (1968). General systems theory. New York: Braziller.

    Google Scholar 

  • Beven, K. J. (1975). A deterministic spatially distributed model of catchment hydrology. Unpublished Ph.D. thesis, University of East Anglia: Norwich, UK.

    Google Scholar 

  • Beven, K. J. (1993). Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources, 16, 41–51.

    Article  Google Scholar 

  • Beven, K. J. (2002). Towards a coherent philosophy for environmental modelling. Proceedings of the Royal Society of London A, 458, 2465–2484.

    Article  MathSciNet  Google Scholar 

  • Beven, K. J. (2006). A manifesto for the equifinality thesis. J. Hydrology, 320, 18–36.

    Article  Google Scholar 

  • Beven, K. J. (2009). Environmental modelling: An uncertain future?. London: Routledge.

    Google Scholar 

  • Beven, K. J. (2012a). Rainfall-runoff modelling: The primer (2nd ed.). Chichester: Wiley-Blackwell.

    Book  Google Scholar 

  • Beven, K. J. (2012b). Causal models as multiple working hypotheses about environmental processes. Comptes Rendus Geoscience, Académie de Sciences, Paris, 344, 77–88. https://doi.org/10.1016/j.crte.2012.01.005.

    Article  Google Scholar 

  • Beven, K. J. (2016). EGU Leonardo lecture: Facets of Hydrology-epistemic error, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal, 61(9), 1652–1665. https://doi.org/10.1080/02626667.2015.1031761.

    Article  Google Scholar 

  • Beven, K. J., & Kirkby, M. J. (1979). A physically-based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69.

    Article  Google Scholar 

  • Beven, K. J., & Binley, A. M. (1992). The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 6, 279–298.

    Article  Google Scholar 

  • Beven, K. J., & Westerberg, I. (2011). On red herrings and real herrings: disinformation and information in hydrological inference. Hydrological Processes, 25, 1676–1680. https://doi.org/10.1002/hyp.7963.

    Article  Google Scholar 

  • Beven, K. J., & Alcock, R. (2012). Modelling everything everywhere: A new approach to decision making for water management under uncertainty. Freshwater Biology, 56, 124–132. https://doi.org/10.1111/j.1365-2427.2011.02592.x.

    Article  Google Scholar 

  • Beven, K., & Binley, A. (2014). GLUE: 20 years on. Hydrological Processes, 28(24), 5897–5918.

    Article  Google Scholar 

  • Beven, K. J., & Smith, P. J. (2015). Concepts of information content and likelihood in parameter calibration for hydrological simulation models. ASCE Jornal of Hydrologic. Engineering. https://doi.org/10.1061/(asce)he.1943-5584.0000991.

  • Beven, K. J., Smith, P. J., & Freer, J. (2008). So just why would a modeller choose to be incoherent? Journal of Hydrology, 354, 15–32.

    Article  Google Scholar 

  • Beven, K. J., Leedal, D. T., McCarthy, S. (2011a). Framework for assessing uncertainty in fluvial flood risk mapping, CIRIA report C721, 2014, at http://www.ciria.org/Resources/Free_publications/fluvial_flood_risk_mapping.aspx.

  • Beven, K., Smith, P. J., & Wood, A. (2011b). On the colour and spin of epistemic error (and what we might do about it). Hydrology and Earth System Sciences, 15, 3123–3133. https://doi.org/10.5194/hess-15-3123-2011.

  • Beven, K. J., Leedal, D. T., & McCarthy, S. (2014). Framework for assessing uncertainty in fluvial flood risk mapping, CIRIA report C721. Available at http://www.ciria.org/Resources/Free_publications/fluvial_flood_risk_mapping.aspx.

  • Chorley, R. J. (1962). Geomorphology and general systems theory, U.S. Geological Survey, Prof. Paper 500-1B, Washington, DC.

    Google Scholar 

  • Coxon, G., Freer, J., Westerberg, I. K., Wagener, T., Woods, R., & Smith, P. J. (2015). A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations. Water Resources Research, 51(7), 5531–5546.

    Article  Google Scholar 

  • Culling, W. E. H. (1957). Mulitcycle streams and the equilibrium theory of grade. The Journal of Geology, 65, 259–274.

    Google Scholar 

  • Culling, W. E. H. (1987). Equifinality: Modern approaches to dynamical systems and their potential for geomorphological thought. Transactions of the Institute of British Geographers, 13, 345–360.

    Google Scholar 

  • Dean, S., Freer, J. E., Beven, K. J., Wade, A. J., & Butterfield, D. (2009). Uncertainty assessment of a process-based integrated catchment model of phosphorus (INCA-P). Stochastic Environmental Research and Risk Assessment, 2009(23), 991–1010. https://doi.org/10.1007/s00477-008-0273-z.

    Article  Google Scholar 

  • Evangelinos, C., & Hill, C. (2008). Cloud computing for parallel scientific HPC applications: Feasibility of running coupled atmosphere-ocean climate models on Amazon’s EC2. Ratio2(2.40), 2–34.

    Google Scholar 

  • Fowler, H. J., Cooley, D., Sain, S. R., & Thurston, M. (2010). Detecting change in UK extreme precipitation using results from the climateprediction. net BBC climate change experiment. Extremes13(2), 241–267.

    Google Scholar 

  • Frame, D. J., Aina, T., Christensen, C. M., Faull, N. E., Knight, S. H. E., Piani, C., et al. (2009). The climateprediction. net BBC climate change experiment: Design of the coupled model ensemble. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences367(1890), 855–870.

    Google Scholar 

  • Franks, S. W., & Beven, K. J. (1999). Conditioning a multiple patch SVAT model using uncertain time-space estimates of latent heat fluxes as inferred from remotely-sensed data. Water Resources Research, 35(9), 2751–2761.

    Article  Google Scholar 

  • Gahegan, M., & Ehlers, M. (2000). A framework for the modelling of uncertainty between remote sensing and geographic information systems. ISPRS Journal of Photogrammetry and Remote Sensing, 55(3), 176–188.

    Article  Google Scholar 

  • Gupta, H. V. & Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Error and Nash‐Sutcliffe Efficiency type metrics. Water Resources Research47(10).

    Google Scholar 

  • Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1), 80–91.

    Article  Google Scholar 

  • Halpern, J. Y. (2005). Reasoning about uncertainty. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Helmer, O., & Rescher, N. (1959). On an epistemology of the inexact sciences. Management Science, 6(1), 25–52.

    Article  Google Scholar 

  • Hollaway, M. J., Beven, K. J., Benskin, C. M. W. H., Collins, A. L., Evans, R., Falloon, P. D. et al. (2018). The challenges of modelling phosphorus in a headwater catchment: Applying a ‘limits of acceptability’ uncertainty framework to a water quality model, Journal of Hydrology (in press).

    Google Scholar 

  • Hornberger, G. M., & Spear, R. C. (1981). An approach to the preliminary analysis of environmental systems. Journal of Environmental Management, 12, 7–18.

    Google Scholar 

  • Klemes, V. (1986). Delettantism in hydrology: Transition or destiny? Water Resources Research, 22, S177–S188.

    Article  Google Scholar 

  • Lobell, D. B., Asner, G. P., Ortiz-Monasterio, J. I., & Benning, T. L. (2003). Remote sensing of regional crop production in the Yaqui Valley, Mexico: Estimates and uncertainties. Agriculture, Ecosystems & Environment, 94(2), 205–220.

    Article  Google Scholar 

  • Madsen, H. (2003). Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Advances in Water Resources, 26(2), 205–216.

    Article  Google Scholar 

  • Montanari, A. (2005). Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 41(8), W08406.

    Article  MathSciNet  Google Scholar 

  • Mantovan, P., & Todini, E. (2006). Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. Journal of Hydrology, 330(1), 368–381.

    Article  Google Scholar 

  • Mitchell, S, Beven, K. J., Freer, J., & Law, B. (2011). Processes influencing model-data mismatch in drought-stressed, fire-disturbed, eddy flux sites. JGR-Biosciences, 116. https://doi.org/10.1029/2009jg001146.

  • McMillan, H. K., & Westerberg, I. K. (2015). Rating curve estimation under epistemic uncertainty. Hydrological Processes, 29(7), 1873–1882.

    Article  Google Scholar 

  • Mizukami, N., Rakovec, O., Newman, A., Clark, M., Wood, A., Gupta, H., et al. (2018). On the choice of calibration metrics for “high flow” estimation using hydrologic models. Hydrology and Earth system Science Discussions. https://www.hydrol-earth-syst-sci-discuss.net/hess-2018-391/.

  • Nash, J. E., & Sutcliffe, J. S. (1970). River-flow forecasting through conceptual models. 1. A discussion of principles. Journal of Hydrology, 10, 282–290.

    Article  Google Scholar 

  • Nearing, G. S., Tian, Y., Gupta, H. V., Clark, M. P., Harrison, K. W., & Weijs, S. V. (2016). A philosophical basis for hydrological uncertainty. Hydrological Sciences Journal, 61(9), 1666–1678.

    Article  Google Scholar 

  • O’Hagan, A., & Oakley, A. E. (2004). Probability is perfect but we can’t elicit it perfectly. Reliability Engineering and System Safety, 85, 239–248.

    Article  Google Scholar 

  • Page, T., Beven, K. J., & Freer, J. (2007). Modelling the chloride signal at the Plynlimon catchments, wales using a modified dynamic TOPMODEL. Hydrological Processes, 21, 292–307.

    Article  Google Scholar 

  • Pappenberger, F., Frodsham, K., Beven, K. J., Romanovicz, R., & Matgen, P. (2007). Fuzzy set approach to calibrating distributed flood inundation models using remote sensing observations. Hydrology and Earth System Sciences, 11(2), 739–752.

    Article  Google Scholar 

  • Pokhrel, P., Yilmaz, K. K., & Gupta, H. V. (2012). Multiple-criteria calibration of a distributed watershed model using spatial regularization and response signatures. Journal of Hydrology, 418, 49–60.

    Article  Google Scholar 

  • Refsgaard, J. C., & Knudsen, J. (1996). Operational validation and intercomparison of different types of hydrological models. Water Resources Research, 32(7), 2189–2202.

    Google Scholar 

  • Rose, K. A., Smith, E. P., Gardner, R. H., Brenkert, A. L., & Bartell, S. M. (1991). Parameter sensitivities, Monte Carlo filtering, and model forecasting under uncertainty. Journal of Forecasting, 10(1–2), 117–133.

    Article  Google Scholar 

  • Romanowicz, R., Beven, K. J., & Tawn, J. (1994). Evaluation of predictive uncertainty in non-linear hydrological models using a Bayesian approach. In V. Barnett & K. F. Turkman (Eds.), Statistics for the environment II. Water related issues (pp. 297–317). Wiley.

    Google Scholar 

  • Romanowicz, R., Beven, K. J., & Tawn, J. (1996). Bayesian calibration of flood inundation models. In M. G. Anderson, D. E. Walling, & P. D. Bates, (Eds.) Floodplain Processes (pp. 333–360).

    Google Scholar 

  • Reusser, D. E., Blume, T., Schaefli, B., & Zehe, E. (2009). Analysing the temporal dynamics of model performance for hydrological models. Hydrology and earth system sciences13(EPFL-ARTICLE-162488), 999–1018.

    Google Scholar 

  • Renard, B., Kavetski, D., Kuczera, G., Thyer, M., & Franks, S. W. (2010). Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resources Research46(5).

    Google Scholar 

  • Rowlands, D. J., Frame, D. J., Ackerley, D., Aina, T., Booth, B. B., Christensen, C., et al. (2012). Broad range of 2050 warming from an observationally constrained large climate model ensemble. Nature Geoscience, 5(4), 256–260.

    Article  Google Scholar 

  • Schaefli, B., & Gupta, H. V. (2007). Do Nash values have value? Hydrological Processes, 21(15), 2075–2080.

    Article  Google Scholar 

  • Schoups, G., & Vrugt, J. A. (2010). A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors. Water Resources Research46(10).

    Google Scholar 

  • Smith, P., Beven, K. J., & Tawn, J. A. (2008). Informal likelihood measures in model assessment: Theoretic development and investigation. Advances in Water Resources, 31(8), 1087–1100.

    Article  Google Scholar 

  • Sorooshian, S., & Gupta, H. V. (1995). Model calibration. In V. P. Singh (Ed.), Computer models of watershed hydrology. Highlands Ranch CO: Water Resource Publications.

    Google Scholar 

  • Spear, R. C., & Hornberger, G. M. (1980). Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis. Water Research, 14(1), 43–49.

    Google Scholar 

  • Stedinger, J. R., Vogel, R. M., Lee, S. U., & Batchelder, R. (2008). Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resources Research, 44(12), W00806.

    Article  Google Scholar 

  • Thompson, T. D. (1961). Numerical weather analysis and prediction. New York: Macmillan.

    Google Scholar 

  • Van Straten, G. T., & Keesman, K. J. (1991). Uncertainty propagation and speculation in projective forecasts of environmental change: A lake-eutrophication example. Journal of Forecasting, 10(1–2), 163–190.

    Article  Google Scholar 

  • Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., & Sorooshian, S. (2003). Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39(8), W01214.

    Google Scholar 

  • Westerberg, I., Guerrero, J. L., Seibert, J., Beven, K. J., & Halldin, S. (2011). Stage-discharge uncertainty derived with a non-stationary rating curve in the Choluteca River, Honduras. Hydrological Processes, 25(4), 603–613.

    Article  Google Scholar 

  • Yapo, P. O., Gupta, H. V., & Sorooshian, S. (1998). Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204(1–4), 83–97.

    Article  Google Scholar 

  • Zhang, D., Beven, K. J., & Mermoud, A. (2006). A comparison of nonlinear least square and GLUE for model calibration and uncertainty estimation for pesticide transport in soils. Advances in Water Resources, 29, 1924–1933.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Beven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beven, K. (2019). Validation and Equifinality. In: Beisbart, C., Saam, N. (eds) Computer Simulation Validation. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-70766-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70766-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70765-5

  • Online ISBN: 978-3-319-70766-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics