Skip to main content

Standards for Evaluation of Atmospheric Models in Environmental Meteorology

  • Chapter
  • First Online:

Part of the book series: Simulation Foundations, Methods and Applications ((SFMA))

Abstract

This chapter focuses on evaluation guidelines developed in the field of environmental meteorology. Definitions for verification, validation, and evaluation as used in the field of environmental meteorology are given. A generic structure of a model evaluation guideline is introduced consisting of three parts: (A) Specification of application area, (B) evaluation steps to be performed by the model developer, and (C) evaluation steps to be performed by the model user. The generic structure is detailed using two examples from environmental meteorology. For both examples, an accepted standard for model evaluation was achieved by involving the relevant stakeholders in the harmonization process. The methodology to achieve a standard and why standards are relevant in environmental meteorology is outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CCA-EM:

Commission for Clean Air

EGa:

VDI 3783 Part 7 (VDI 2017a)

EGb:

VDI 3783 Part 9 (VDI 2017b)

LES:

Large eddy simulation

MQI:

Model quality indicator

MQO:

Model quality objective

RANS:

Reynolds-averaged Navier–Stokes

References

  • Baklanov, A., Schlünzen, K. H., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., et al. (2014). Online coupled regional meteorology chemistry models in Europe. Current status and prospects. Atmospheric Chemistry and Physics, 14, 317–398, https://doi.org/10.5194/acp-14-317-2014.

    Article  Google Scholar 

  • BMUB. (2016). Entwurf zur Anpassung der Ersten Allgemeinen Verwaltungsvorschrift zum Bundes–Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft – TA Luft) Stand: 09.09.2016. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Retrieved June 21, 2017, from www.bmub.bund.de/N53642/.

  • Cox, R., Bauer, B. L., & Smith, T. (1998). Mesoscale model intercomparison. Bulletin of the American Meteorological Society, 87, 167–196.

    Google Scholar 

  • Deardorff, J. W. (1978). Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. Journal Geophysical Research, 83, 1889–1903.

    Article  Google Scholar 

  • Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C., et al. (2010). A framework for evaluating regional-scale numerical photochemical modeling systems. Environmental Fluid Mechanics, 10, 471–489.

    Article  Google Scholar 

  • Di Sabatino, S., Olesen, H. R., Berkowicz, R., Franke, J., Schatzmann, M., Leitl, B., et al. (2011a). Towards a model evaluation protocol for urban scale flow and dispersion models. International Journal of Environment and Pollution, 47, 326–336.

    Article  Google Scholar 

  • Di Sabatino, S., Buccolieri, R., Olesen, H. R., Ketzel, M., Berkowicz, R., Franke, J., et al. (2011b). COST 732 in practice: The MUST model evaluation exercise. International Journal of Environment and Pollution, 44, 403–418. https://doi.org/10.1504/ijep.2011.038442.

    Article  Google Scholar 

  • EC. (1980). Council Directive 80/779/EEC of 15 July 1980 on air quality limit values and guide values for sulphur dioxide and suspended particulates. Official Journal of the European Communities, L 229, 30–48.

    Google Scholar 

  • EC. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (OJL 152, 11.6.2008, pp. 1–44). Retrieved November 09, 2011, from http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF.

  • Franke, J., Hellsten, A., Schlünzen, K. H., & Carissimo, B. (2011). The COST 732 best practice guideline for CFD simulation of flows in the urban environment - a summary. International Journal of Environment and Pollution, 44, 419–427. https://doi.org/10.1504/IJEP.2011.038443.

    Article  Google Scholar 

  • Geertsema, G., Schlünzen, K. H., ter Pelkwijk, H., Jalkanen, L., Baklanov, A., Fisher, B., et al. (2018). User training for mesoscale modelling applications to air pollution. In R. S. Sokhi, A. Baklanov, & K. H. Schlünzen (Eds.), Mesoscale modelling for meteorological and air pollution applications. Anthem Press, London. ISBN:9781783088263.

    Google Scholar 

  • GLA. (2002). 50 years on. The struggle for air quality in London since the great smog of December 1952. Mayor of London, Greater London Authority.

    Google Scholar 

  • Hay, J. S., & Pasquill, F. (1957). Diffusion from a fixed source at a height of a few hundred feet in the atmosphere. Journal of Fluid Mechanics, 2, 299. https://doi.org/10.1127/0941-2948/2012/0356.

    Article  Google Scholar 

  • Letzel, M. O., Helmke, C., Ng, E., An, X., Lai, A., & Raasch, S. (2012). LES case study on pedestrian level ventilation in two neighbourhoods in Hong Kong. Meteorologische Zeitschrift, 21, 575–589.

    Article  Google Scholar 

  • Luft, T. A. (2002). Technical Instruction on Air Quality Control – Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz, June 24, 2002. GMBl. Nr. 25-29, S. 511.

    Google Scholar 

  • Meroney, R., Ohba, R., Leitl, B., Kondo, H., Grawe, D. (2016). Review of CFD guidelines for dispersion modeling. Fluids, 1–14, https://doi.org/10.3390/fluids1020014.

    Article  Google Scholar 

  • Nordmann, S., Quass, U., Schlünzen, K. H., Müller, W. J., & Jäckel, S. (2017). CEN/EU Richtlinienaktivitäten zur Qualitätssicherung von Ausbreitungsrechnungen und Verursacheranalysen. Gefahrstoffe-Reinhaltung der Luft, 7(8), 303–308.

    Google Scholar 

  • Olesen, H. R. (2017). Initiative on “Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes”. Retrieved June 25, 2017, from http://www.harmo.org/.

  • Popper K. R. (1982). Logik der Forschung. Verlag J.C.B. Mohr (Paul Siebeck), Tübingen (pp. 450).

    Google Scholar 

  • Schlünzen, K. H. (1996). Validierung hochauflösender Regionalmodelle. Ber. aus dem Zentrum f. Meeres- und Klimaforschung, Meteorologisches Institut, Universität Hamburg, A23, 184. http://www.bis.zmaw.de/fileadmin/Bib/Volltexte/ZMK-A23.pdf.

  • Schlünzen, K. H. (1997). On the validation of high-resolution atmospheric mesoscale models. Journal of Wind Engineering and Industrial Aerodynamics, 67 & 68, 479–492.

    Article  Google Scholar 

  • Schlünzen, K. H., & Katzfey, J. J. (2003). Relevance of sub-grid-scale land-use effects for mesoscale models. Tellus, 55A, 232–246.

    Article  Google Scholar 

  • Schlünzen, K. H., & Sokhi, R. S. (Eds.) (2008). Overview of tools and methods for meteorological and air pollution mesoscale model evaluation and user training. Joint report of COST Action 728 and GURME. GAW Report No. 181 (115 pp).

    Google Scholar 

  • Schlünzen, K. H., Grawe, D., Bohnenstengel, S. I., Schlüter, I., & Koppmann, R. (2011). Joint modelling of obstacle induced and mesoscale changes – current limits and challenges. Journal of Wind Engineering and Industrial Aerodynamics, 99, 217–225. https://doi.org/10.1016/j.jweia.2011.01.009.

    Article  Google Scholar 

  • Schlünzen, K. H., Conrady, K., & Purr, C. (2016). Typical performances of mesoscale meteorology models. In: D. G. Steyn & N. Chaumerliac (Eds.) Air pollution modeling and its application XXIV, air pollution modeling and its application XXIV (p 447–457). https://doi.org/10.1007/978-3-319-24478-5_72.

    Google Scholar 

  • Schlünzen, K. H., Grawe, D., & Oettl, D. (2017). Qualitätssicherung in der Ausbreitungsrechnung - Evaluierungsrichtlinien für mesoskalige und mikroskalige Windfeldmodelle. Gefahrstoffe-Reinhaltung der Luft, 7(8), 298–302.

    Google Scholar 

  • Schlünzen, K. H., Builtjes, P., Deserti, M., Douros, J., Galmarini, S., Miranda, A. I., Palau, J. L., & Schere, K. (2018). Evaluating the performance of mesoscale meteorology models used for air quality simulations. In: R. S. Sokhi, A. Baklanov, & K. H. Schlünzen (Eds.), Mesoscale modelling for meteorological and air pollution applications. Anthem Press, London. ISBN:9781783088263.

    Google Scholar 

  • Thunis, R., Galmarini, S., Martilli, A., Clappier, A., Andronopoulos, S., Bartzis, J., et al. (2003). MESOCOM: An inter-comparison exercise of mesoscale flow models applied to an ideal case simulation. Atmospheric Environment, 37, 363–382. https://doi.org/10.1016/s1352-2310(02)00888-9.

    Article  Google Scholar 

  • VDI. (2000). VDI 3945 Part 3 Environmental meteorology - Atmospheric dispersion models - Particle model. Berlin, Beuth-Verlag. Retrieved July 27, 2017, from https://www.beuth.de/en/technical-rule/vdi-3945-blatt-3/36552631.

  • VDI. (2010). VDI 3783 Part 13: Environmental meteorology - Quality control concerning air quality forecast - Plant-related pollution control - Dispersion calculation according to TA Luft. Beuth-Verlag. Retrieved July 27, 2017, from https://www.beuth.de/en/technical-rule/vdi-3783-blatt-13/121969008.

  • VDI. (2015). VDI 3783 Part 16: Environmental meteorology - Prognostic mesoscale wind field models - Methods for licensing procedures according to TA Luft. Beuth-Verlag. Retrieved July 27, 2017, from https://www.beuth.de/en/technical-rule/vdi-3783-blatt-16/228625611.

  • VDI. (2017a). VDI 3783 Part 7: Environmental meteorology - Prognostic mesoscale wind field models – Evaluation for dynamically and thermodynamically induced flow fields. Beuth-Verlag. Retrieved July 27, 2017, from https://www.beuth.de/en/technical-rule/vdi-3783-blatt-7/267500583.

  • VDI. (2017b). VDI 3783 Part 9: Environmental meteorology - Prognostic microscale wind field models - Evaluation for flow around buildings and obstacles. Beuth-Verlag. Retrieved July 27, 2017, from https://www.beuth.de/en/technical-rule/vdi-3783-blatt-9/267500591.

  • VDI. (2017c). VDI 3783 Part 20: Environmental meteorology – Testing the transferability of meteorological data for application within the context of TA Luft. Berlin: Beuth Verlag. Retrieved January 16, 2019, from https://www.beuth.de/en/technical-rule/vdi-3783-blatt-20/261571898.

  • VDI. (2018). VDI 3783 Part 15.1: Environmental meteorology – Simplified method for estimating nitrogen deposition. In preparation, agreed draft published 2018. (https://www.beuth.de/en/draft-technical-rule/vdi-3783-blatt-15-1/288390435). publication of standard in 2019 (personal communication).

Download references

Acknowledgements

The guideline development in CCA-EM includes many experts in the field of environmental meteorology that support the development of standards since more than 60 years. We have to thank all those involved in this time-consuming and voluntary work, since without their contributions to the development of environmental meteorology standards the atmosphere would be less healthy and environmental friendly.

The research needed for this contribution is supported through the Cluster of Excellence “CliSAP” (EXC177) funded by the German Science Foundation, the research project UrbMod funded by the state of Hamburg, Germany, and last not least the German Environment Agency UBA via UFOPLAN project 3712 43 241.

The content of this paper is in the responsibility of the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Heinke Schlünzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schlünzen, K.H. (2019). Standards for Evaluation of Atmospheric Models in Environmental Meteorology. In: Beisbart, C., Saam, N. (eds) Computer Simulation Validation. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-70766-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70766-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70765-5

  • Online ISBN: 978-3-319-70766-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics