Skip to main content

Path Towards Future Research

  • Chapter
  • First Online:
Detoxification of Chemical Warfare Agents

Abstract

In this chapter are partially included results reported in the following publications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. Giannakoudakis, M. Seredych, E. Rodríguez-Castellón, T.J. Bandosz, Mesoporous graphitic carbon nitride-based nanospheres as visible-light active chemical warfare agents decontaminant. ChemNanoMat 2, 268–272 (2016). https://doi.org/10.1002/cnma.201600030

    Article  Google Scholar 

  2. D.A. Giannakoudakis, N.A. Travlou, J. Secor, T.J. Bandosz, Oxidized g-C 3 N 4 nanospheres as catalytically photoactive linkers in MOF/g-C 3 N 4 composite of hierarchical pore structure. Small 13, 1601758 (2017). https://doi.org/10.1002/smll.201601758

    Article  Google Scholar 

  3. M. Florent, D.A. Giannakoudakis, R. Wallace, T.J. Bandosz, Mixed CuFe and ZnFe (hydr)oxides as reactive adsorbents of chemical warfare agent surrogates. J. Hazard. Mater. 329, 141–149 (2017). https://doi.org/10.1016/j.jhazmat.2017.01.036

    Article  Google Scholar 

  4. M. Florent, D.A. Giannakoudakis, T.J. Bandosz, Mustard gas surrogate interactions with modified porous carbon fabrics: effect of oxidative treatment. Langmuir (2017) https://doi.org/10.1021/acs.langmuir.7b02047

  5. R. Wallace, D.A. Giannakoudakis, M. Florent, C. Karwacki, T.J. Bandosz, Ferrihydrite deposited on cotton textiles as protection media against chemical warfare agent surrogate (2-Chloroethyl Ethyl Sulfide). J. Mater. Chem. A. 5, 4972–4981 (2017). https://doi.org/10.1039/C6TA09548H

    Article  Google Scholar 

  6. D.A. Giannakoudakis, Y. Hu, M. Florent, T.J. Bandosz, Smart textiles of MOF/g-C 3 N 4 nanospheres for the rapid detection/detoxification of chemical warfare agents. Nanoscale Horiz. (2017). https://doi.org/10.1039/C7NH00081B

    Google Scholar 

  7. Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15–37 (2015). https://doi.org/10.1039/C4NR03008G

    Article  Google Scholar 

  8. J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  Google Scholar 

  9. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317

    Article  Google Scholar 

  10. J. Hong, C. Chen, F.E. Bedoya, G.H. Kelsall, D. O’Hare, C. Petit, Carbon nitride nanosheet/metal–organic framework nanocomposites with synergistic photocatalytic activities. Catal. Sci. Technol. 6, 5042–5051 (2016). https://doi.org/10.1039/C5CY01857A

    Article  Google Scholar 

  11. G. Zhang, Z.-A. Lan, X. Wang, Merging surface organometallic chemistry with graphitic carbon nitride photocatalysis for CO 2 photofixation. ChemCatChem 7, 1422–1423 (2015). https://doi.org/10.1002/cctc.201500133

    Article  Google Scholar 

  12. X. Wang, G. Zhang, Z. Lan, L. Lin, S. Lin, Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agent. Chem. Sci. (2016). https://doi.org/10.1039/C5SC04572J

    Google Scholar 

  13. J. Qin, S. Wang, H. Ren, Y. Hou, X. Wang, Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B Environ. 179, 1–8 (2015). https://doi.org/10.1016/j.apcatb.2015.05.005

    Article  Google Scholar 

  14. G. Zhang, S. Zang, L. Lin, Z. Lan, G. Li, X. Wang, Ultrafine cobalt catalysts on covalent carbon nitride frameworks for oxygenic photosynthesis. ACS Appl. Mater. Interfaces (2016) https://doi.org/10.1021/acsami.5b11167

  15. Y. Zheng, L. Lin, B. Wang, X. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chemie—Int. Ed. 54, 12868–12884 (2015). https://doi.org/10.1002/anie.201501788

    Article  Google Scholar 

  16. Y. Zhao, J. Zhang, L. Qu, Graphitic carbon nitride/graphene hybrids as new active materials for energy conversion and storage. ChemNanoMat 1, 298–318 (2015). https://doi.org/10.1002/cnma.201500060

    Article  Google Scholar 

  17. D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo et al., Highly efficient photocatalytic H 2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chemie Int. Ed. 53, 9240–9245 (2014). https://doi.org/10.1002/anie.201403375

    Article  Google Scholar 

  18. W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/Ja01539a017

    Article  Google Scholar 

  19. I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 358, 278–286 (2015). https://doi.org/10.1016/j.apsusc.2015.08.097

    Article  Google Scholar 

  20. M. Groenewolt, M. Antonietti, Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 17, 1789–1792 (2005). https://doi.org/10.1002/adma.200401756

    Article  Google Scholar 

  21. D.A. Giannakoudakis, J.K. Mitchell, T.J. Bandosz, Reactive adsorption of mustard gas surrogate on zirconium (hydr)oxide/graphite oxide composites: the role of surface and chemical features. J. Mater. Chem. A. 4, 1008–1019 (2016). https://doi.org/10.1039/C5TA09234E

    Article  Google Scholar 

  22. G. Fang, J. Gao, C. Liu, D.D. Dionysiou, Y. Wang, D. Zhou, Key role of persistent free radicals in hydrogen peroxide activation by biochar: Implications to organic contaminant degradation. Environ. Sci. Technol. 48, 1902–1910 (2014). https://doi.org/10.1021/es4048126

    Article  Google Scholar 

  23. D.A. Giannakoudakis, J.A. Arcibar-Orozco, T.J. Bandosz, Effect of GO phase in Zn(OH)2/GO composite on the extent of photocatalytic reactive adsorption of mustard gas surrogate. Appl. Catal. B Environ. (2016). https://doi.org/10.1016/j.apcatb.2015.10.014

    Google Scholar 

  24. C.O. Ania, M. Seredych, E. Rodriguez-castellon, T.J. Bandosz, New copper/ GO based material as an efficient oxygen reduction catalyst in an alkaline medium: The role of unique Cu/ rGO architecture. Appl. Catal. B Environ. 33011, 1–50 (2014)

    Google Scholar 

  25. C. Petit, L. Huang, J. Jagiello, J. Kenvin, K.E. Gubbins, T.J. Bandosz, Toward understanding reactive adsorption of ammonia on Cu-MOF/graphite oxide nanocomposites. Langmuir 27, 13043–13051 (2011). https://doi.org/10.1021/la202924y

    Article  Google Scholar 

  26. T.J. Bandosz, C. Petit, MOF/graphite oxide hybrid materials: Exploring the new concept of adsorbents and catalysts. Adsorption 17, 5–16 (2011). https://doi.org/10.1007/s10450-010-9267-5

    Article  Google Scholar 

  27. J.A. Arcibar-Orozco, D.A. Giannakoudakis, T.J. Bandosz, Copper hydroxyl nitrate/graphite oxide composite as superoxidant for the decomposition/mineralization of organophosphate-based chemical warfare agent surrogate. Adv. Mater. Interfaces 2, 1–9 (2015). https://doi.org/10.1002/admi.201500215

    Article  Google Scholar 

  28. C. Hu, T. Lu, F. Chen, R. Zhang, A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis. J. Chinese Adv. Mater. Soc. 1, 21–39 (2013). https://doi.org/10.1080/22243682.2013.771917

    Article  Google Scholar 

  29. P. Samorì, I.A. Kinloch, X. Feng, V. Palermo, Graphene-based nanocomposites for structural and functional applications: using 2-dimensional materials in a 3-dimensional world. 2D Mater. 2, 30205 (2015). https://doi.org/10.1088/2053-1583/2/3/030205

  30. S. Pattnaik, K. Swain, Z. Lin, Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J. Mater. Chem. B. 4, 7813–7831 (2016). https://doi.org/10.1039/C6TB02086K

    Article  Google Scholar 

  31. L. Ji, P. Meduri, V. Agubra, X. Xiao, M. Alcoutlabi, Graphene-Based nanocomposites for energy storage. Adv. Energy Mater. 6, 7–16 (2016). https://doi.org/10.1002/aenm.201502159

    Article  Google Scholar 

  32. H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen, L. Leng et al., Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl. Catal. B Environ. 174–175, 445–454 (2015). https://doi.org/10.1016/j.apcatb.2015.03.037

    Article  Google Scholar 

  33. I.E. Wachs, K. Routray, Catalysis science of bulk mixed oxides. ACS Catal. 2, 1235–1246 (2012). https://doi.org/10.1021/cs2005482

    Article  Google Scholar 

  34. M. Johansson, T. Mattisson, A. Lyngfelt, Creating a synergy effect by using mixed oxides of iron and nickel oxides in the combustion of methane in a chemical-looping combustion reactor. Energy Fuels 20, 2399–2407 (2006). https://doi.org/10.1021/ef060068l

    Article  Google Scholar 

  35. I.E. Wachs, Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal. Today 100, 79–94 (2005). https://doi.org/10.1016/j.cattod.2004.12.019

    Article  Google Scholar 

  36. R. Dieckmann, Point defects and transport in non-stoichiometric oxides: solved and unsolved problems. J. Phys. Chem. Solids 59, 507–525 (1998). https://doi.org/10.1016/S0022-3697(97)00205-9

    Article  Google Scholar 

  37. P. Cousin, R.A. Ross, Preparation of mixed oxides—a review. Mater. Sci. Eng. A 130, 119–125 (1990). https://doi.org/10.1016/0921-5093(90)90087-J

    Article  Google Scholar 

  38. D.A. Giannakoudakis, J.A. Arcibar-Orozco, T.J. Bandosz, Key role of terminal hydroxyl groups and visible light in the reactive adsorption/catalytic conversion of mustard gas surrogate on zinc (hydr)oxides. Appl. Catal. B Environ. 174, 96–104 (2015). https://doi.org/10.1016/j.apcatb.2015.02.028

    Article  Google Scholar 

  39. J.A. Arcibar-Orozco, D.A. Giannakoudakis, T.J. Bandosz, Effect of Ag containing (nano)particles on reactive adsorption of mustard gas surrogate on iron oxyhydroxide/graphite oxide composites under visible light irradiation. Chem. Eng. J. 303, 123–136 (2016). https://doi.org/10.1016/j.cej.2016.05.111

    Article  Google Scholar 

  40. G.K. Pradhan, S. Martha, K.M. Parida, Synthesis of multifunctional nanostructured zinc-iron mixed oxide photocatalyst by a simple solution-combustion technique. ACS Appl. Mater. Interfaces 4, 707–713 (2012). https://doi.org/10.1021/am201326b

    Article  Google Scholar 

  41. M. Florent, D.A. Giannakoudakis, R. Wallace, T.J. Bandosz, Carbon textiles modified with copper-based reactive adsorbents as efficient media for detoxification of chemical warfare agents. ACS Appl. Mater. Interfaces 9, 26965–26973 (2017). https://doi.org/10.1021/acsami.7b10682

    Article  Google Scholar 

  42. B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B.A. Rosen, R. Haasch et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 1–8 (2013). https://doi.org/10.1038/ncomms3819

    Google Scholar 

  43. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(80), 760–764 (2009). https://doi.org/10.1126/science.1168049

  44. D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chemie—Int. Ed. 44, 3358–3393 (2005). https://doi.org/10.1002/anie.200460587

    Article  Google Scholar 

  45. S. Vihodceva, S. Kukle, Cotton textile surface investigation before and after deposition of the ZnO coating by sol-gel method. J. Nano- Electron. Phys. 5, 1–5 (2013)

    Google Scholar 

  46. A.K. Yetisen, H. Qu, A. Manbachi, H. Butt, M.R. Dokmeci, J.P. Hinestroza et al., Nanotechnology in textiles. ACS Nano 10, 3042–3068 (2016). https://doi.org/10.1021/acsnano.5b08176

    Article  Google Scholar 

  47. J.A. Arcibar-Orozco, D.A. Giannakoudakis, T.J. Bandosz, Effect of Ag containing (nano)particles on reactive adsorption of mustard gas surrogate on iron oxyhydroxide/graphite oxide composites under visible light irradiation. Chem. Eng. J. (2016). https://doi.org/10.1016/j.cej.2016.05.111

    Google Scholar 

  48. J.A. Arcibar-Orozco, S. Panettieri, T.J. Bandosz, Reactive adsorption of CEES on iron oxyhydroxide/(N-)graphite oxide composites under visible light exposure. J. Mater. Chem. A. 3, 17080–17090 (2015). https://doi.org/10.1039/C5TA04223B

    Article  Google Scholar 

  49. J.A. Arcibar-Orozco, T.J. Bandosz, Visible light enhanced removal of a sulfur mustard gas surrogate from a vapor phase on novel hydrous ferric oxide/graphite oxide composites. J. Mater. Chem. A. 3, 220–231 (2015). https://doi.org/10.1039/C4TA04159C

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dimitrios A. Giannakoudakis or Teresa J. Bandosz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giannakoudakis, D.A., Bandosz, T.J. (2018). Path Towards Future Research. In: Detoxification of Chemical Warfare Agents . Springer, Cham. https://doi.org/10.1007/978-3-319-70760-0_6

Download citation

Publish with us

Policies and ethics