Advertisement

Design and Fundamental Characteristics of PEM Fuel Cells

  • Alhussein Albarbar
  • Mohmad Alrweq
Chapter
  • 880 Downloads

Abstract

The structure and operation principles of single PEM fuel cells are explained in this chapter. Thermodynamic behaviour, polarisation analysis including activation, Ohmic and concentration ones are deeply discussed. Overall efficiency, voltage outputs are also studied and explained with the support of mathematical equations.

Keywords

PEM fuel cell operation principle PEM fuel cell thermodynamic analysis PEM fuel cells polarisation phenomenon Efficiency of PEM fuel cells 

References

  1. 1.
    Alrweq, M., Albarbar, A. (2016). Investigation into the characteristics of proton exchange membrane fuel cell-based power system. IET Science, Measurement & Technology. doi: https://doi.org/10.1049/iet-smt.2015.0046 , Online ISSN 1751–8830.
  2. 2.
    Laberty-Robert, C., Valle, K., Pereira, F., & Sanchez, C. (2011). Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chemical Society Reviews, 40(2), 961–1005.CrossRefGoogle Scholar
  3. 3.
    Shao, Y., Yin, G., & Gao, Y. (2007). Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. Journal of Power Sources, 171(2), 558–566.CrossRefGoogle Scholar
  4. 4.
    Cheng, S., Liu, H., & Logan, B. E. (2006). Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environmental Science & Technology, 40(1), 364–369.CrossRefGoogle Scholar
  5. 5.
    Sutharssan, T., Montalvao, D., Chen, Y. K., Wang, W. C., Pisac, C., & Elemara, H. (2017). A review on prognostics and health monitoring of proton exchange membrane fuel cell. Renewable and Sustainable Energy Reviews, 75, 440–450.CrossRefGoogle Scholar
  6. 6.
    Chatenet, M., Dubau, L., Job, N., & Maillard, F. (2010). The (electro) catalyst| membrane interface in the proton exchange membrane fuel cell: Similarities and differences with non-electrochemical catalytic membrane reactors. Catalysis Today, 156(3), 76–86.CrossRefGoogle Scholar
  7. 7.
    Niu, X. D., Munekata, T., Hyodo, S. A., & Suga, K. (2007). An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM FC by a multiphase multiple-relaxation-time lattice Boltzmann model. Journal of Power Sources, 172(2), 542–552.CrossRefGoogle Scholar
  8. 8.
    Spurgeon, J. M., Walter, M. G., Zhou, J., Kohl, P. A., & Lewis, N. S. (2011). Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays. Energy & Environmental Science, 4(5), 1772–1780.CrossRefGoogle Scholar
  9. 9.
    Ural, Z., Gencoglu, M.T., & Gumus, B. (2007). Dynamic simulation of a PEMFC system. In Proceedings 2nd international hydrogen energy congress and exhibition IHEC.Google Scholar
  10. 10.
    Offer, G. J., Mermelstein, J., Brightman, E., & Brandon, N. P. (2009). Thermodynamics and kinetics of the interaction of carbon and sulfur with solid oxide FCanodes. Journal of the American Ceramic Society, 92(4), 763–780.CrossRefGoogle Scholar
  11. 11.
    Wang, L., Husar, A., Zhou, T., & Liu, H. (2003). A parametric study of PEM FC performances. International Journal of Hydrogen Energy, 28(11), 1263–1272.CrossRefGoogle Scholar
  12. 12.
    AlZahrani, A., Dincer, I., & Li, X. (2015). A performance assessment study on solid oxide fuel cells for reduced operating temperatures. International Journal of Hydrogen Energy, 40(24), 7791–7797.CrossRefGoogle Scholar
  13. 13.
    Jaouen, F., Goellner, V., Lefèvre, M., Herranz, J., Proietti, E., & Dodelet, J. P. (2013). Oxygen reduction activities compared in rotating-disk electrode and proton exchange membrane fuel cells for highly active Fe N C catalysts. Electrochimica Acta, 87, 619–628.CrossRefGoogle Scholar
  14. 14.
    Al-Baghdadi, M. A. S. (2005). Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations. Renewable Energy, 30(10), 1587–1599. Bevers, D., et al. (1997). Simulation of a polymer electrolyte FC electrode. Journal of Applied Electrochemisrty, 27, 1254–1264.Google Scholar
  15. 15.
    Kim, J. H., Jang, M. H., Choe, J. S., Kim, D. Y., Tak, Y. S., & Cho, B. H. (2011). An experimental analysis of the ripple current applied variable frequency characteristic in a polymer electrolyte membrane fuel cell. Journal of Power Electronics, 11(1), 82–89.CrossRefGoogle Scholar
  16. 16.
    Wang, C. Y. (2004). Fundamental models for FC engineering. Chemical Reviews, 104(10), 4727–4766.CrossRefGoogle Scholar
  17. 17.
    Berger, C. (1968). Handbook of FC technology (1st ed.). Englewood Cliffs: Prentice-Hall, Inc. 607.Google Scholar
  18. 18.
    Wandschneider, F. T., Finke, D., Grosjean, S., Fischer, P., Pinkwart, K., Tübke, J., & Nirschl, H. (2014). Model of a vanadium redox flow battery with an anion exchange membrane and a Larminie-correction. Journal of Power Sources, 272, 436–447.CrossRefGoogle Scholar
  19. 19.
    Ercolino, G., Ashraf, M. A., Specchia, V., & Specchia, S. (2015). Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation. Applied Energy, 143, 138–153.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alhussein Albarbar
    • 1
  • Mohmad Alrweq
    • 1
  1. 1.School of EngineeringThe Manchester Metropolitan UniversityManchesterUK

Personalised recommendations