Proton Exchange Membrane Fuel Cells: Review

  • Alhussein Albarbar
  • Mohmad Alrweq


This chapter reviews recent work done on fuel cells with a focus on PEM fuel cells and their fundamental components. The review process is divided into: design related and those dealt with control and monitoring methods. Achievements, shortfalls and remaining tasks for future investigations are also outlined throughout this chapter.


PEM fuel cells Design of PEM fuel cells Monitoring techniques for PEM fuel cells 


  1. 1.
    Fecarotti, C., Andrews, J., & Chen, R. (2016). A Petri net approach for performance modelling of polymer electrolyte membrane fuel cell systems. International Journal of Hydrogen Energy, 41, 12242–12260.CrossRefGoogle Scholar
  2. 2.
    Alrweq, M., & Albarbar, A. (2016). Investigation into the characteristics of proton exchange membrane fuel cell-based power system. IET Science, Measurement & Technology. doi:, Online ISSN 1751–8830.
  3. 3.
    James, B. D., & Spisak, A. B. (2012). Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2012 Update. Report by Strategic Analysis, Inc., under Award Number DEEE0005236 for the US Department of Energy, 18.and sustainable energy reviews, 11(8), 1720–1738.Google Scholar
  4. 4.
    Zhou, Y., Neyerlin, K., Olson, T. S., Pylypenko, S., Bult, J., Dinh, H. N., Gennett, T., Shao, Z., & O’Hayre, R. (2010). Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy & Environmental Science, 3(10), 1437–1446.CrossRefGoogle Scholar
  5. 5.
    Devanathan, R. (2013). Proton exchange membranes for FCs. In R. H. Crabtree (Ed.), Energy production and storage: Inorganic chemical strategies for a warming world (Vol. 8, p. 89.) ISBN: 978-0-470-74986-9.Google Scholar
  6. 6.
    Scott, K., Xu, C., & Wu, X. (2014). Intermediate temperature proton-conducting membrane electrolytes for fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 3(1), 24–41.CrossRefGoogle Scholar
  7. 7.
    Subianto, S., Pica, M., Casciola, M., Cojocaru, P., Merlo, L., Hards, G., & Jones, D. J. (2013). Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells. Journal of Power Sources, 233, 216–230.CrossRefGoogle Scholar
  8. 8.
    Tang, H., Qi, Z., Ramani, M., & Elter, J. F. (2006). PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. Journal of Power Sources, 158(2), 1306–1312.CrossRefGoogle Scholar
  9. 9.
    Cheng, X., Zhang, J., Tang, Y., Song, C., Shen, J., Song, D., & Zhang, J. (2007). Hydrogen crossover in high-temperature PEM fuel cells. Journal of Power Sources, 167(1), 25–31.CrossRefGoogle Scholar
  10. 10.
    Gittleman, C. S., Coms, F. D., & Lai, Y. H. (2011). Membrane durability: Physical and chemical degradation. In Polymer electrolyte fuel cell degradation (pp. 15–88). Denmark: Elsevier.Google Scholar
  11. 11.
    Gubler, L., & Scherer, G. G. (2009). Durability of radiation-grafted fuel cell membranes. In Polymer electrolyte fuel cell durability (pp. 133–155). New York: Springer.CrossRefGoogle Scholar
  12. 12.
    Young, A. P. (2010). Characterization of structural degradation in a polymer electrolyte membrane fuel cell cathode catalyst layer (Doctoral dissertation, University of British Columbia).Google Scholar
  13. 13.
    Wang, S., Jiang, S. P., White, T. J., Guo, J., & Wang, X. (2009). Electrocatalytic activity and interconnectivity of Pt nanoparticles on multi-walled carbon nanotubes for FCs. The Journal of Physical Chemistry C, 113(43), 18935–18945.CrossRefGoogle Scholar
  14. 14.
    Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901–4934.CrossRefGoogle Scholar
  15. 15.
    Zhou, X., Qiao, J., Yang, L., & Zhang, J. (2014). A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Advanced Energy Materials, 4(8), 1301523.CrossRefGoogle Scholar
  16. 16.
    Tang, H., Peikang, S., Jiang, S. P., Wang, F., & Pan, M. (2007). A degradation study of Nafion proton exchange membrane of PEM fuel cells. Journal of Power Sources, 170(1), 85–92.CrossRefGoogle Scholar
  17. 17.
    Chandan, A., Hattenberger, M., El-Kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B. G., Ingram, A., & Bujalski, W. (2013). High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)–A review. Journal of Power Sources, 231, 264–278.CrossRefGoogle Scholar
  18. 18.
    Subban, C. V., Zhou, Q., Hu, A., Moylan, T. E., Wagner, F. T., & DiSalvo, F. J. (2010). Sol− gel synthesis, electrochemical characterization, and stability testing of Ti0. 7W0. 3O2 nanoparticles for catalyst support applications in proton-exchange membrane fuel cells. Journal of the American Chemical Society, 132(49), 17531–17536.CrossRefGoogle Scholar
  19. 19.
    Wu, J., Yuan, X. Z., Martin, J. J., Wang, H., Zhang, J., Shen, J., Wu, S., & Merida, W. (2008). A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. Journal of Power Sources, 184(1), 104–119.CrossRefGoogle Scholar
  20. 20.
    Kraytsberg, A., & Ein-Eli, Y. (2014). Review of advanced materials for proton exchange membrane fuel cells. Energy & Fuels, 28(12), 7303–7330.CrossRefGoogle Scholar
  21. 21.
    Abdo, N., & Easton, E. B. (2016). Nafion/Polyaniline composite membranes for hydrogen production in the Cu–Cl thermochemical cycle. International Journal of Hydrogen Energy, 41(19), 7892–7903.CrossRefGoogle Scholar
  22. 22.
    Okada, T., Møller-Holst, S., Gorseth, O., & Kjelstrup, S. (1998). Transport and equilibrium properties of Nafion® membranes with H+ and Na+ ions. Journal of Electroanalytical Chemistry, 442(1), 137–145.CrossRefGoogle Scholar
  23. 23.
    Gancs, L., Hult, B. N., Hakim, N., & Mukerjee, S. (2007). The impact of Ru contamination of a Pt/C electrocatalyst on its oxygen-reducing activity. Electrochemical and Solid-State Letters, 10(9), B150–B154.CrossRefGoogle Scholar
  24. 24.
    Inaba, M., Kinumoto, T., Kiriake, M., Umebayashi, R., Tasaka, A., & Ogumi, Z. (2006). Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochimica Acta, 51(26), 5746–5753.CrossRefGoogle Scholar
  25. 25.
    Rowshanzamir, S., Peighambardoust, S. J., Parnian, M. J., Amirkhanlou, G. R., & Rahnavard, A. (2015). Effect of Pt-Cs 2.5 H 0.5 PW 12 O 40 catalyst addition on durability of self-humidifying nanocomposite membranes based on sulfonated poly (ether ether ketone) for proton exchange membrane fuel cell applications. International Journal of Hydrogen Energy, 40(1), 549–560.CrossRefGoogle Scholar
  26. 26.
    Jeon, Y., Park, J. I., Ok, J., Dorjgotov, A., Kim, H. J., Kim, H., Lee, C., Park, S., & Shul, Y. G. (2016). Enhancement of catalytic durability through nitrogen-doping treatment on the CNF-derivatized ACF support for high temperature PEMFC. International Journal of Hydrogen Energy, 41(16), 6864–6876.CrossRefGoogle Scholar
  27. 27.
    Koh, S., Leisch, J., Toney, M. F., & Strasser, P. (2007). Structure-activity-stability relationships of Pt-Co alloy electrocatalysts in gas-diffusion electrode layers. The Journal of Physical Chemistry C, 111(9), 3744–3752.CrossRefGoogle Scholar
  28. 28.
    Dubau, L., Castanheira, L., Maillard, F., Chatenet, M., Lottin, O., Maranzana, G., Dillet, J., Lamibrac, A., Perrin, J. C., Moukheiber, E., & ElKaddouri, A. (2014). A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies. Wiley Interdisciplinary Reviews: Energy and Environment, 3(6), 540–560.CrossRefGoogle Scholar
  29. 29.
    Vielstich, W., Yokokawa, H., & Gasteiger, H. A. (2009). Handbook of fuel cells: Fundamentals technology and applications. Chichester: Wiley.Google Scholar
  30. 30.
    Zhang, H., & Shen, P. K. (2012). Recent development of polymer electrolyte membranes for fuel cells. Chemical Reviews, 112(5), 2780–2832.CrossRefGoogle Scholar
  31. 31.
    Jeon, Y., Na, H., Hwang, H., Park, J., Hwang, H., & Shul, Y. G. (2015). Accelerated life-time test protocols for polymer electrolyte membrane fuel cells operated at high temperature. International Journal of Hydrogen Energy, 40(7), 3057–3067.CrossRefGoogle Scholar
  32. 32.
    Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(17), 9349–9384.CrossRefGoogle Scholar
  33. 33.
    Nakagawa, T., Nakabayashi, K., Higashihara, T., & Ueda, M. (2010). A high performance polymer electrolyte membrane based on sulfonated poly (ether sulfone) with binaphthyl units. Journal of Materials Chemistry, 20(32), 6662–6667.CrossRefGoogle Scholar
  34. 34.
    Xin, H. L., Mundy, J. A., Liu, Z., Cabezas, R., Hovden, R., Kourkoutis, L. F., Zhang, J., Subramanian, N. P., Makharia, R., Wagner, F. T., & Muller, D. A. (2011). Atomic-resolution spectroscopic imaging of ensembles of nano-catalyst particles across the life of a fuel cell. Nano Letters, 12(1), 490–497.CrossRefGoogle Scholar
  35. 35.
    Meier, J. C., Galeano, C., Katsounaros, I., Topalov, A. A., Kostka, A., Schüth, F., & Mayrhofer, K. J. (2012). Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catalysis, 2(5), 832–843.CrossRefGoogle Scholar
  36. 36.
    Yuan, X. Z., Li, H., Zhang, S., Martin, J., & Wang, H. (2011). A review of polymer electrolyte membrane fuel cell durability test protocols. Journal of Power Sources, 196(22), 9107–9116.CrossRefGoogle Scholar
  37. 37.
    Pedersen, C. M., Escudero-Escribano, M., Velázquez-Palenzuela, A., Christensen, L. H., Chorkendorff, I., & Stephens, I. E. (2015). Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode: Oxygen reduction and hydrogen oxidation in the presence of CO (review article). Electrochimica Acta, 179, 647–657.CrossRefGoogle Scholar
  38. 38.
    Schmittinger, W., & Vahidi, A. (2008). A review of the main parameters influencing long-term performance and durability of PEM fuel cells. Journal of Power Sources, 180(1), 1–14.CrossRefGoogle Scholar
  39. 39.
    Kusoglu, A., Karlsson, A. M., Santare, M. H., Cleghorn, S., & Johnson, W. B. (2006). Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle. Journal of Power Sources, 161(2), 987–996.CrossRefGoogle Scholar
  40. 40.
    Xie, J., Wood, D. L., Wayne, D. M., Zawodzinski, T. A., Atanassov, P., & Borup, R. L. (2005). Durability of PEFCs at high humidity conditions. Journal of the Electrochemical Society, 152(1), A104–A113.CrossRefGoogle Scholar
  41. 41.
    Zarrin, H., Higgins, D., Jun, Y., Chen, Z., & Fowler, M. (2011). Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. The Journal of Physical Chemistry C, 115(42), 20774–20781.CrossRefGoogle Scholar
  42. 42.
    Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., & Zelenay, P. (2007). Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 107(10), 3904–3951.CrossRefGoogle Scholar
  43. 43.
    Lohoff, A. S., Günther, D., Hehemann, M., Müller, M., & Stolten, D. (2016). Extending the lifetime of direct methanol fuel cell systems to more than 20,000 h by applying ion exchange resins. International Journal of Hydrogen Energy, 41(34), 15325–15334.CrossRefGoogle Scholar
  44. 44.
    Assarabowski, R.J., Unkert, W.T., Bach, L.A., Grasso, A.P., Olsommer, B.C., & Utc Fuel Cells, Llc (2004). Method and apparatus for preventing water in fuel cell power plants from freezing during storage. U.S. Patent 6,797,421.Google Scholar
  45. 45.
    Alink, R., Gerteisen, D., & Oszcipok, M. (2008). Degradation effects in polymer electrolyte membrane fuel cell stacks by sub-zero operation—An in situ and ex situ analysis. Journal of Power Sources, 182(1), 175–187.CrossRefGoogle Scholar
  46. 46.
    Jung, H. M., & Um, S. (2011). An experimental feasibility study of vanadium oxide films on metallic bipolar plates for the cold start enhancement of fuel cell vehicles. International Journal of Hydrogen Energy, 36(24), 15826–15837.CrossRefGoogle Scholar
  47. 47.
    Shao, M. H., Huang, T., Liu, P., Zhang, J., Sasaki, K., Vukmirovic, M. B., & Adzic, R. R. (2006). Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir, 22(25), 10409–10415.CrossRefGoogle Scholar
  48. 48.
    Shao, M., Shoemaker, K., Peles, A., Kaneko, K., & Protsailo, L. (2010). Pt monolayer on porous Pd− Cu alloys as oxygen reduction electrocatalysts. Journal of the American Chemical Society, 132(27), 9253–9255.CrossRefGoogle Scholar
  49. 49.
    Gasteiger, H. A., Kocha, S. S., Sompalli, B., & Wagner, F. T. (2005). Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 56(1), 9–35.CrossRefGoogle Scholar
  50. 50.
    Sasaki, K., Shao, M., & Adzic, R. (2009). Dissolution and stabilization of platinum in oxygen cathodes. In F. N. Büchi, M. Inaba, & T. J. Schmidt (Eds.), Polymer electrolyte fuel cell durability. New York: Springer. Scholar
  51. 51.
    Maiyalagan, T. (2008). Synthesis and electro-catalytic activity of methanol oxidation on nitrogen containing carbon nanotubes supported Pt electrodes. Applied Catalysis B: Environmental, 80(3), 286–295.CrossRefGoogle Scholar
  52. 52.
    Shao, Y., Yin, G., Gao, Y., & Shi, P. (2006). Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. Journal of the Electrochemical Society, 153(6), A1093–A1097.CrossRefGoogle Scholar
  53. 53.
    Meng, H. (2008). Numerical analyses of non-isothermal self-start behaviour of PEM fuel cells from subfreezing start-up temperatures. International Journal of Hydrogen Energy, 33(20), 5738–5747.CrossRefGoogle Scholar
  54. 54.
    Yang, L., Larouche, N., Chenitz, R., Zhang, G., Lefèvre, M., & Dodelet, J. P. (2015). Activity, performance, and durability for the reduction of oxygen in PEM fuel cells, of Fe/N/C electrocatalysts obtained from the pyrolysis of metal-organic-framework and iron porphyrin precursors. Electrochimica Acta, 159, 184–197.CrossRefGoogle Scholar
  55. 55.
    Tanuma, T., & Kinoshita, S. (2011). Impact of gas diffusion layers (GDLs) on water transport in PEFCs. Journal of the Electrochemical Society, 159(2), B150–B154.CrossRefGoogle Scholar
  56. 56.
    Kangasniemi, K. H., Condit, D. A., & Jarvi, T. D. (2004). Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions. Journal of the Electrochemical Society, 151(4), E125–E132.CrossRefGoogle Scholar
  57. 57.
    Oberholzer, P., Boillat, P., Siegrist, R., Perego, R., Kästner, A., Lehmann, E., Scherer, G. G., & Wokaun, A. (2011). Cold-start of a PEFC visualized with high resolution dynamic in-plane neutron imaging. Journal of the Electrochemical Society, 159(2), B235–B245.CrossRefGoogle Scholar
  58. 58.
    Lim, C., Ghassemzadeh, L., Van Hove, F., Lauritzen, M., Kolodziej, J., Wang, G. G., Holdcroft, S., & Kjeang, E. (2014). Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells. Journal of Power Sources, 257, 102–110.CrossRefGoogle Scholar
  59. 59.
    Ha, T., Cho, J., Park, J., Min, K., Kim, H. S., Lee, E., & Jyoung, J. Y. (2011). Experimental study on carbon corrosion of the gas diffusion layer in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 36(19), 12436–12443.CrossRefGoogle Scholar
  60. 60.
    Taherian, R. (2014). A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. Journal of Power Sources, 265, 370–390.CrossRefGoogle Scholar
  61. 61.
    Karimi, S., Fraser, N., Roberts, B., & Foulkes, F. R. (2012). A review of metallic bipolar plates for proton exchange membrane fuel cells: Materials and fabrication methods. Advances in Materials Science and Engineering, 2012, 1–22.CrossRefGoogle Scholar
  62. 62.
    Iranzo, A., Muñoz, M., Rosa, F., & Pino, J. (2010). Numerical model for the performance prediction of a PEM fuel cell. Model results and experimental validation. International Journal of Hydrogen Energy, 35(20), 11533–11550.CrossRefGoogle Scholar
  63. 63.
    Hu, Q., Zhang, D., Fu, H., & Huang, K. (2014). Investigation of stamping process of metallic bipolar plates in PEM fuel cell—Numerical simulation and experiments. International Journal of Hydrogen Energy, 39(25), 13770–13776.CrossRefGoogle Scholar
  64. 64.
    Antunes, R. A., Oliveira, M. C. L., Ett, G., & Ett, V. (2010). Corrosion of metal bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 35(8), 3632–3647.CrossRefGoogle Scholar
  65. 65.
    Gabreab, E. M., Hinds, G., Fearn, S., Hodgson, D., Millichamp, J., Shearing, P. R., & Brett, D. J. (2014). An electrochemical treatment to improve corrosion and contact resistance of stainless steel bipolar plates used in polymer electrolyte fuel cells. Journal of Power Sources, 245, 1014–1026.CrossRefGoogle Scholar
  66. 66.
    Brady, M. P., Elhamid, M. A., Dadheech, G., Bradley, J., Toops, T. J., Meyer, H. M., & Tortorelli, P. F. (2013). Manufacturing and performance assessment of stamped, laser welded, and nitrided FeCrV stainless steel bipolar plates for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(11), 4734–4739.CrossRefGoogle Scholar
  67. 67.
    Wang, Y. J., Qiao, J., Baker, R., & Zhang, J. (2013). Alkaline polymer electrolyte membranes for fuel cell applications. Chemical Society Reviews, 42(13), 5768–5787.CrossRefGoogle Scholar
  68. 68.
    Kakati, B. K., Ghosh, A., & Verma, A. (2013). Efficient composite bipolar plate reinforced with carbon fiber and graphene for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 38(22), 9362–9369.CrossRefGoogle Scholar
  69. 69.
    Lee, K., Zhang, J., Wang, H., & Wilkinson, D. P. (2006). Progress in the synthesis of carbon nanotube-and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. Journal of Applied Electrochemistry, 36(5), 507–522.CrossRefGoogle Scholar
  70. 70.
    Wu, B., Lin, G., Fu, Y., Hou, M., & Yi, B. (2010). Chromium-containing carbon film on stainless steel as bipolar plates for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 35(24), 13255–13261.CrossRefGoogle Scholar
  71. 71.
    Ni, M. (2013). Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming. Energy Conversion and Management, 70, 116–129.CrossRefGoogle Scholar
  72. 72.
    Najafi, B., Mamaghani, A. H., Rinaldi, F., & Casalegno, A. (2015). Long-term performance analysis of an HT-PEM fuel cell based micro-CHP system: Operational strategies. Applied Energy, 147, 582–592.CrossRefGoogle Scholar
  73. 73.
    Vengatesan, S., Panha, K., Fowler, M. W., Yuan, X. Z., & Wang, H. (2012). Membrane electrode assembly degradation under idle conditions via unsymmetrical reactant relative humidity cycling. Journal of Power Sources, 207, 101–110.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alhussein Albarbar
    • 1
  • Mohmad Alrweq
    • 1
  1. 1.School of EngineeringThe Manchester Metropolitan UniversityManchesterUK

Personalised recommendations