Skip to main content

Sensing of Dissolved Chlorides Using Intrinsic Signals

  • Chapter
  • First Online:
  • 496 Accesses

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 28))

Abstract

The dissolution of a “structure breaking reagent” such as NaCl results in reduction of hydrogen bonds between water molecules and a corresponding change in the absorption of electromagnetic energy at specific absorption bands (Chap. 1). This change in energy absorption is proportional to the amount of salt dissolved in water. Sodium and Calcium Chlorides are among the strongest structure-breaking reagents, a quality which is used in deicing agents. As part of a program investigating the use of optical spectroscopy for applications to the subsurface monitoring of infrastructure materials, a study was carried out involving analysis of the Near-Infrared (NIR) spectra of EM radiation when interacting with aqueous solutions containing dissolved Sodium Chloride (NaCl). This chapter described results of sensitivity and calibration procedures for in situ intrinsic sensing of dissolved Chlorides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Mattarneh, H. (2016). Determination of chloride content in concrete using near- and far-field microwave non-destructive methods. Corrosion Science, 105, 133–140.

    Article  Google Scholar 

  • Alonso, C., Castellote, M., & Andrade, C. (2002). Chloride threshold dependence of pitting potential of reinforcements. Electrochimica Acta, 47(21), 3469–3481.

    Article  Google Scholar 

  • Angst, U., Elsener, B., Larsen, C. K., & Vennesland, Ø. (2009). Critical chloride content in reinforced concrete—A review. Cement and Concrete Research, 39(12), 1122–1138.

    Article  Google Scholar 

  • Ann, K. Y., & Song, H. (2007). Chloride threshold level for corrosion of steel in concrete. Corrosion Science, 49(11), 4113–4133.

    Article  Google Scholar 

  • Arslan, H., & Demir, Y. (2013). Impacts of seawater intrusion on soil salinity and alkalinity in Bafra Plain, Turkey. Environmental monitoring and assessment, 185(2), 1027–1040.

    Article  Google Scholar 

  • Assouli, B., Simescu, F., Debicki, G., & Idrissi, H. (2005). Detection and identification of concrete cracking during corrosion of reinforced concrete by acoustic emission coupled to the electrochemical techniques. NDT and E International, 38(8), 682–689.

    Article  Google Scholar 

  • Bae, J. Y., Shin, K. J., Hyun, J. H., Jang, Y. I., & Kim, Y. Y. (2014). Chloride resistance of concrete with marine blended cement using corrosion resistant mineral admixture. In 2013 3rd International Conference on Civil Engineering and Building Materials, CEBM 2013, December 7–8, 2013. Trans Tech Publications Ltd., pp. 23–26.

    Article  Google Scholar 

  • Bertolini, L., Bolzoni, F., Pastore, T., & Pedeferri, P. (1996). Behaviour of stainless steel in simulated concrete pore solution. British Corrosion Journal, 31(3), 218–222.

    Article  Google Scholar 

  • Bois, K. J., Benally, A. D., & Zoughi, R. (2001). Near-field microwave non-invasive determination of NaCl in mortar. IEE Proceedings-Science, Measurement and Technology, 148(4), 178.

    Article  Google Scholar 

  • Chalk, S. J., & Tyson, J. F. (1998). Determination of chloride by flow injection spectrophotometry with membrane reagent introduction. Analytica Chimica Acta, 366(1), 147–153.

    Article  Google Scholar 

  • Charette, M. A., & Allen, M. C. (2006). Precision ground water sampling in coastal aquifers using a direct-push, shielded-screen well-point system. Ground Water Monitoring and Remediation, 26(2), 87–93.

    Article  Google Scholar 

  • Chen, X., Tang, M., & Ma, K. (2012). Underground concrete structure exposure to sulfate and chloride invading environment. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 43(7), 2803–2812.

    Google Scholar 

  • Darmawan, M. S. (2010). Pitting corrosion model for reinforced concrete structures in a chloride environment. Magazine of Concrete Research, 62(2), 91–101.

    Article  Google Scholar 

  • Dhir, R. K., Jones, M. R., & McCarthy, M. J. (1993). Quantifying chloride-induced corrosion from half-cell potential. Cement and Concrete Research, 23(6), 1443–1454.

    Article  Google Scholar 

  • Falco, L., Berthou, H., Cochet, F., Scheja, B., & Parriaux, O. (1986). Temperature sensor using single mode fiber evanescent field absorption. In Fiber Optic Sensors. Conference Presented at the 2nd International Technical Symposium on Optical and Electro-Optical Applied Science and Engineering, 25–27 November, 1985. SPIE, pp. 114–119.

    Google Scholar 

  • Fuhr, P. L., Huston, D. R., Mcpadden, A. P., & Cauley, R. F. (1996). Embedded chloride detectors for roadways and bridges. In Smart Structures and Materials 1996: Smart Systems for Bridges, Structures, and Highways, February 28–29, 1996. Society of Photo-Optical Instrumentation Engineers, pp. 229–237.

    Google Scholar 

  • Furby, S., Caccetta, P., & Wallace, J. (2010). Salinity monitoring in Western Australia using remotely sensed and other spatial data. Journal of Environmental Quality, 39(1), 16–25.

    Article  Google Scholar 

  • Ghandehari, M., & Vimer, C. (2003). Moisture sensing in structural materials using near-infrared evanescent field spectroscopy. In F. Chang (Ed.), Structural health monitoring 2003: From diagnosis & prognostics to structural health management; Proceedings of the 4th international workshop on structural health monitoring. Lancaster, Pa: DEStech Publications.

    Google Scholar 

  • Ghandehari, M., & Vimer, C. (2006). in situ monitoring of moisture in pavement materials. In A. GUERMES, (Ed.), Structural health monitoring: Proceeding of the third European conference, July 5–7 2006. Granada, Spain: Transportation Research Board.

    Google Scholar 

  • Ghandehari, M., Vimer, C. S., Ioannou, I., Sidelev, A., Jin, W., & Spellane, P. (2012). in situ measurement of liquid phase moisture in cement mortar. NDT and E International, 45(1), 162.

    Article  Google Scholar 

  • Grant, A., Davies, A. M. C., & Bilverstone, T. (1989). Simultaneous determination of sodium hydroxide, sodium carbonate and sodium chloride concentrations in aqueous solutions by near-infrared spectrometry. Analyst, 114(7), 819–822.

    Article  Google Scholar 

  • Hansson, C. M., & Sorensen, B. (1990). Threshold concentration of chloride in concrete for the initiation of reinforcement corrosion. ASTM Special Technical Publication, 1065, 3–16.

    Google Scholar 

  • Holden, W. R., Page, C. L., & Short, N. R. (1983). The influence of chlorides and sulphates on durability. Corrosion of reinforcement in concrete construction, 13-15 June 1983. Society of Chemical Industry, pp. 143-150.

    Google Scholar 

  • Hugenschmidt, J., & Loser, R. (2008). Detection of chlorides and moisture in concrete structures with ground penetrating radar. Materials and Structures, 41(4), 785–792.

    Article  Google Scholar 

  • Jain, J., & Neithalath, N. (2011). Electrical impedance analysis based quantification of microstructural changes in concretes due to non-steady state chloride migration. Materials Chemistry and Physics, 129(1–2), 569–579.

    Article  Google Scholar 

  • Jin, M., Jiang, L., Lu, M., & Bai, S. (2017). Monitoring chloride ion penetration in concrete structure based on the conductivity of graphene/cement composite. Construction and Building Materials, 136, 394–404.

    Article  Google Scholar 

  • Kanada, H., Ishikawa, Y., & Uomoto, T. (2006). On-site elemental analysis of concrete by portable energy dispersive X-ray fluorescence analyzer. In 10th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC 2010, August 3–5, 2006. School of Engineering and Technology, pp. 279–284.

    Article  Google Scholar 

  • Kodl, G. (2004). A new optical waveguide pressure sensor using evanescent field, 2004, IEEE, pp. 1946 Vol. 2.

    Google Scholar 

  • Laferriere, F., Inaudi, D., Kronenberg, P., & Smith, I. F. C. (2008). A new system for early chloride detection in concrete. Smart Materials and Structures, 17(4).

    Article  Google Scholar 

  • Leung, C. K. Y., Wan, K. T., & Chen, L. (2008). A novel optical fiber sensor for steel corrosion in concrete structures. Sensors, 8(3), 1960–1976.

    Article  Google Scholar 

  • Li, L., & Sagues, A. A. (2001). Chloride corrosion threshold of reinforcing steel in alkaline solutions–open-circuit immersion tests. Corrosion, 57(1), 19.

    Article  Google Scholar 

  • Liu, G., Widger, R. A., & Jin, Y. C. (2006). Trend analysis of road salt impacts on groundwater salinity at a long-term monitoring site. In 2006 Annual Conference of the Transportation Association of Canada: Transportation Without Boundaries, TAC/ATC, September 17 – 20, 2006. Transportation Association of Canada (TAC).

    Google Scholar 

  • Mehta, P. K., Scheissl, P., & Raupach, M. (1992). Performance and durability of concrete systems. In 9th International Congress on the Chemistry of Cement, November 1992, Delhi, India. National Council for Cement and Building Materials, pp. 571–605.

    Google Scholar 

  • Moradillo, M. K., Sudbrink, B., Hu, Q., Aboustait, M., Tabb, B., Ley, M. T. et al. (2017). Using micro X-ray fluorescence to image chloride profiles in concrete. Cement and Concrete Research, 92, 128–141.

    Article  Google Scholar 

  • Moreno, M., Morris, W., Alvarez, M. G., & Duffo, G. S. (2004). Corrosion of reinforcing steel in simulated concrete pore solutions effect of carbonation and chloride content. Corrosion Science, 46(11), 2681–2699.

    Article  Google Scholar 

  • Mortl, A. E., Munoz-Carpena, R., Li, Y. C. (2006). Hydroperiod and soil water salinity in the baldcypress floodplains of the loxahatchee river. In International Conference on Hydrology and Management of Forested Wetlands, April 8 – 12, 2006. American Society of Agricultural and Biological Engineers, pp. 395–402.

    Google Scholar 

  • Nie, M., Huang, H., Dai, Y., Li, W., Jiang, P., Yang, W. (2016). Experiment on chloride ion content of concrete structure in coastal salt-fog area. In International Symposium on Materials Application and Engineering, SMAE 2016, August 20 – 21, 2016. EDP Sciences.

    Article  Google Scholar 

  • Poupard, O., Aït-Mokhtar, A., & Dumargue, P. (2004). Corrosion by chlorides in reinforced concrete: Determination of chloride concentration threshold by impedance spectroscopy. Cement and Concrete Research, 34(6), 991–1000.

    Article  Google Scholar 

  • Proverbio, E., & Carassiti, F. (1997). Evaluation of chloride content in concrete by X-ray fluorescence. Cement and Concrete Research, 27(8), 1213–1223.

    Article  Google Scholar 

  • Safavi, A., & Abdollahi, H. (1998). Optical sensor for high pH values. Analytica Chimica Acta, 367(1), 167–173.

    Article  Google Scholar 

  • Saremi, M., & Mahallati, E. (2002). A study on chloride-induced depassivation of mild steel in simulated concrete pore solution. Cement and Concrete Research, 32(12), 1915–1921.

    Article  Google Scholar 

  • Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by amplified least squares procedures. Analytical Chemistry, 36, 1627–1639.

    Article  Google Scholar 

  • Sookoomjariyapong, C., Vongchavalitkul, S., & Sayamipuk, S. (2011). Risk assessment of reinforced concrete structure attacked by chloride, In 2011 1st International Conference on High Performance Structures and Materials Engineering, ICHPSM 2011, May 5–6, 2011. Trans Tech Publications, pp. 734–739.

    Article  Google Scholar 

  • Trnkova, L., Adam, V., Hubalek, J., Babula, P., & Kizek, R. (2008). Amperometric sensor for detection of chloride ions. Sensors, 8(9), 5619–5636.

    Article  Google Scholar 

  • Wilsch, G., Weritz, F., Schaurich, D., & Wiggenhauser, H. (2005). Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy. Construction and Building Materials, 19(10), 724–730.

    Article  Google Scholar 

  • Wood, C., & Harrington, G. A. (2015). Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland. Groundwater, 53(1), 90–98.

    Article  Google Scholar 

  • Yu, H., Hartt, W. H., & Virmani, Y. P. (2007). Effects of reinforcement and coarse aggregates on chloride ingress into concrete and time-to-corrosion: Part I—Spatial chloride distribution and implications. Corrosion, 63(9), 843–849.

    Article  Google Scholar 

  • Yun, H., Patton, M. E., Garrett, J. H., Fedder, G. K., Frederick, K. M., Hsu, J., et al. (2004). Detection of free chloride in concrete by NMR. Cement and Concrete Research, 34(3), 379–390.

    Article  Google Scholar 

  • Zenki, M., & Iwadou, Y. (2002). Repetitive determination of chloride using the circulation of the reagent solution in closed flow-through system. Talanta, 58(6), 1055–1061.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Ghandehari .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghandehari, M., Vimer, C.S., Spellane, P. (2018). Sensing of Dissolved Chlorides Using Intrinsic Signals. In: Optical Phenomenology and Applications . Smart Sensors, Measurement and Instrumentation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-70715-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70715-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70714-3

  • Online ISBN: 978-3-319-70715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics