Skip to main content

Phase Measurement Interferometry for Mapping Fracture

  • Chapter
  • First Online:
Optical Phenomenology and Applications

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 28))

  • 495 Accesses

Abstract

Phase Measurement Interferometry is introduced as an effective approach for the process of measuring crack growth in concrete. The particular mode of cracking of concrete highlighted in this chapter is caused by composite action between reinforcing bars and concrete. The influence of specimen cross-section size and geometry on the interface stresses and bond slip is evaluated. The measured crack length and crack opening and a finite element material model are used in a hybrid experimental/numerical approach to evaluate the unknown normal component of traction at the interface of concrete and rebar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Creath, K. (1985). Phase-shifting speckle interferometry. Applied Optics, 24(18), 3053–3058.

    Article  Google Scholar 

  • Den Uijl, J. A., & Bigaj, A. J. (1996). A bond model for ribbed bars based on concrete confinement. Heron, 41(3).

    Google Scholar 

  • Gambarova, P. G., Rosati, G. P., & Zasso, B. (1989). Steel-to-concrete bond after concrete splitting: Test results. Materials and Structures, 22(1), 35–47.

    Article  Google Scholar 

  • Ghandehari, M. (1998). Bond and cracking in reinforced concrete: Influence of size and geometry, ProQuest Dissertations Publishing.

    Google Scholar 

  • Ghandehari, M., Krishnaswamy, S., & Shah, S. (1999). Technique for evaluating kinematics between rebar and concrete. Journal of Engineering Mechanics, 125(2), 234–241.

    Article  Google Scholar 

  • Ghandehari, M., Krishnaswamy, S., & Shah, S. (2000). Bond-induced longitudinal fracture in reinforced concrete. Journal of Applied Mechanics, 67(4), 740.

    Article  Google Scholar 

  • Gopalaratnam, V. S., & Shah, S. P. (1985). Softening response of plain concrete in direct tension. Journal of the American Concrete Institute, 82(3), 310–323.

    Google Scholar 

  • Ingraffea, A., & Wawrzynek, P. (1994). FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User’s guide.

    Google Scholar 

  • Lutz, L. A., & Gergely, P. (1967 November). Mechanics of bond and slip of deformed bars in concrete. ACI Journal, 711–721.

    Google Scholar 

  • Matsuinoto, K., Wang, T., Hayashi, D., & Nagai, K. (2016). Investigation on the pull-out behavior of deformed bars in cracked reinforced concrete. Journal of Advanced Concrete Technology, 14(9), 573–589.

    Article  Google Scholar 

  • Modena, C. (1992). Theoretical prediction of the ultimate bond strength between a reinforcing bar and concrete. In A. Skudra & A. Tepfers (Eds.), Bond in Concrete. Latvia, Riga.

    Google Scholar 

  • Nikoukalam, M. T., & Sideris, P. (2017). Experimental performance assessment of nearly full-scale reinforced concrete columns with partially debonded longitudinal reinforcement. Journal of Structural Engineering (United States), 143(4).

    Article  Google Scholar 

  • Noghabai, K. (1995). Splitting of concrete in the anchoring zone of deformed bars. Licentiate thesis / LuleÃ¥ University of Technology

    Google Scholar 

  • Reinhardt, H. W. (1992). Bond of steel to strain-softening of concrete taking account of loading rate. In B. Zdenek (Ed.), Fracture Mechanics of Concrete Structures (pp. 809–820). United Kingdom: Taylor and Francis.

    Google Scholar 

  • Rosati, G., & Shumm, C. (1992). Modeling of local bond to concrete bond in reinforced concrete beams. In A. Skudra & A. Tepfers (Eds.), Bond in Concrete (pp. 34–43). Riga, Latvia.

    Google Scholar 

  • Shah, S. P., & Jenq, Y. (1985). Two parameter fracture model for concrete. Journal of Engineering Mechanics, 111(10), 1227–1241.

    Article  Google Scholar 

  • Shah, S. P., Swartz, S. E., & Ouyang, C. (1995). Fracture mechanics of concrete. New York [u.a.]: Wiley.

    Google Scholar 

  • Tepfers, R. (1979). Cracking of concrete cover along anchored deformed reinforcing bars. Magazine of Concrete Research, 31(106), 3–12.

    Article  Google Scholar 

  • Van der Veen, C. (1990). Cryogenic bond stress-slip relationship. Delft University of Technology.

    Google Scholar 

  • Zulli, M., Ghandehari, M., Sidelev, A., & Shah, S. P. (2016). Dimensional factors in oxidation induced fracture in reinforced concrete. Construction and Building Materials, 122, 264–272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Ghandehari .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghandehari, M., Krishnaswamy, S., Shah, S. (2018). Phase Measurement Interferometry for Mapping Fracture. In: Optical Phenomenology and Applications . Smart Sensors, Measurement and Instrumentation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-70715-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70715-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70714-3

  • Online ISBN: 978-3-319-70715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics