Skip to main content

High Fidelity Gas Sensing with Photonic Crystal Fibers

  • Chapter
  • First Online:
Optical Phenomenology and Applications

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 28))

  • 505 Accesses

Abstract

This chapter describes the use of photonic crystal fibers treated with long period grating (PCF-LPG) used for gas sensing. We set out to determine the best PCF configuration design for optimal performance. Numerical simulations were carried out to better understand the mode characteristics of a given PCF configuration and role of the Bragg grating in generating the cladding mode for gas sensing. This was used for determination of optimal PCF structure for the cladding mode coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Birks, T. A., Russell, P. S. J., Couny, F., Knight, J. C., & Benabid, F. (2005). Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature, 434(7032), 488–491.

    Article  Google Scholar 

  • Bise, R. T., & Trevor, D. J. (2004). Surface absorption in microstructured optical fibers, 2004 (pp. 716) IEEE.

    Google Scholar 

  • Boisdé, G., & Harmer, A. (1996). Chemical and biochemical sensing with optical fibers and waveguides. Boston [u.a.]: Artech House.

    Google Scholar 

  • Couny, F., Benabid, F., & Light, P. S. (2007). Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber. Physical Review Letters, 99(14), 143903.

    Article  Google Scholar 

  • He, Z., Tian, F., Zhu, Y., Lavlinskaia, N., & Du, H. (2011). Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor. Biosensors & Bioelectronics, 26(12), 4774–4778.

    Article  Google Scholar 

  • Jensen, J. B., Pedersen, L. H., Carlsen, A., Hoiby, P. E., Nielsen, L. B., & Biarklev, A., et al. (2003). Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions, 2003 (pp. 760–762) IEEE.

    Google Scholar 

  • Martin, P. A. (2002). Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring. Chemical Society Reviews, 31(4), 21.

    Article  Google Scholar 

  • Muhammad, F. A., Stewart, G., & Jin, W. (1993). Sensitivity enhancement of D-fibre methane gas sensor using high-index overlay. IEE Proceedings J Optoelectronics, 140(2), 115.

    Article  Google Scholar 

  • Polynkin, P., Polynkin, A., Peyghambarian, N., & Mansuripur, M. (2005). Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Optics Letters, 30(11), 1273–1275.

    Article  Google Scholar 

  • Pristinski, D., & Du, H. (2006). Solid-core photonic crystal fiber as a Raman spectroscopy platform with a silica core as an internal reference. Optics Letters, 31(22), 3246–3248.

    Article  Google Scholar 

  • Sazio, P. J. A., Amezcua-Correa, A., Finlayson, C. E., Hayes, J. R., Scheidemantel, T. J., Baril, N. F., et al. (2006). Microstructured optical fibers as high-pressure microfluidic reactors. Science, 311(5767), 1583–1586.

    Article  Google Scholar 

  • Tian, F., He, Z., & Du, H. (2012a). Numerical and experimental investigation of long-period gratings in photonic crystal fiber for refractive index sensing of gas media. Optics Letters, 37(3), 380.

    Article  Google Scholar 

  • Tian, F., Kanka, J., & Du, H. (2012b). Long-period grating and its cascaded counterpart in photonic crystal fiber for gas phase measurement. Optics Express, 20(19), 20951.

    Article  Google Scholar 

  • Webber, M. E., Baer, D. S., & Hanson, R. K. (2001). Ammonia monitoring near 1.5 μm with diode-laser absorption sensors. Applied Optics, 40(12), 2031–2042.

    Article  Google Scholar 

  • Weidmann, D., Kosterev, A., Tittel, F. K., Ryan, N., & McDonald, D. (2004). Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy. Optics Letters, 29(16), 1837–1839.

    Article  Google Scholar 

  • Werle, P., Mücke, R., D´AMATO, F., & LANCIA, T. (1998). Near-infrared trace-gas sensors based on room-temperature diode lasers. Applied Physics B Lasers and Optics, 67(3), 307–315.

    Article  Google Scholar 

  • Zheng, S. (2015). Long-period fiber grating moisture sensor with nano-structured coatings for structural health monitoring. Structural Health Monitoring, 14(2), 148–157.

    Article  Google Scholar 

  • Zheng, S., Shan, B., Ghandehari, M., & Ou, J. (2015). Sensitivity characterization of cladding modes in long-period gratings photonic crystal fiber for structural health monitoring. Measurement, 72, 43–51.

    Article  Google Scholar 

  • Zheng, S., Zhu, Y., & Krishnaswamy, S. (2013). Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings. Sensors and Actuators B: Chemical, 176, 264–274.

    Article  Google Scholar 

  • Zhou, X., Liu, X., Jeffries, J. B., & Hanson, R. K. (2003). Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Measurement Science & Technology, 14(8), 1459–1468.

    Article  Google Scholar 

  • Zhu, Y., He, Z., Kaňka, J., & Du, H. (2008). Numerical analysis of refractive index sensitivity of long-period gratings in photonic crystal fiber. Sensors & Actuators: B. Chemical, 129(1), 99–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Ghandehari .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, S., Ghandehari, M. (2018). High Fidelity Gas Sensing with Photonic Crystal Fibers. In: Optical Phenomenology and Applications . Smart Sensors, Measurement and Instrumentation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-70715-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70715-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70714-3

  • Online ISBN: 978-3-319-70715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics