Skip to main content

Remote and In Situ Monitoring of Subsurface Liquid Hydrocarbons

  • Chapter
  • First Online:
Optical Phenomenology and Applications

Abstract

The work presented in this chapter is designed to forward the development of an optical probe for the remote monitoring of liquid hydrocarbons. A series of experiments were carried out to differentiate between classes of hydrocarbons and to discriminate between compounds within a class of similar molecular structures. It was observed that unique absorption spectra can be obtained for each hydrocarbon, and this uniqueness can be used to discriminate between hydrocarbons from different families. Results summarize measurements of the Near-Infrared optical absorption of alkanes, aromatics, and chlorinated hydrocarbons. This approach was selected to assess the feasibility of remote in situ measurements using optical waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque, J. S., Pimentel, F. M., Valdinete, L. S., Raimundo, I. M., Rohwedder, J. R., & Pasquini, C. (2005). Silicone sensing phase for detection of aromatic hydrocarbons in water employing near-infrared spectroscopy. Analytical Chemistry, 77(1), 72–77.

    Article  Google Scholar 

  • Baumann, T., Haaszio, S., & Niessner, R. (2000). Applications of a laser-induced fluorescence spectroscopy sensor in aquatic systems. Water Research, 34(4), 1318–1326.

    Article  Google Scholar 

  • Beyer, T., Hahn, P., Hartwig, S., Konz, W., Scharring, S., Katzir, A., et al. (2003). Mini spectrometer with silver halide sensor fiber for in situ detection of chlorinated hydrocarbons. Sensors & Actuators: B. Chemical, 90(1), 319–323.

    Article  Google Scholar 

  • Buerck, J., Denter, P., Mensch, M., Kraemer, K., & Scholz, M. (1999). Fiber optic NIR evanescent wave absorption sensor systems for in situ monitoring of hydrocarbon compounds in waste and ground water. In Environmental Monitoring and Remediation Technologies. MA: SPIE.

    Google Scholar 

  • Bulatov, V., Gridin, V. V., Polyak, F., & Schechter, I. (1997). Application of pulsed laser methods to in situ probing of highway originated pollutants. Analytica Chimica Acta, 343(1), 93–99.

    Article  Google Scholar 

  • Conzen, J. P., Burck, J., & Ache, H. J. (1993). Characterization of a fiber-optic evanescent wave absorbance sensor for nonpolar organic compounds. Applied Spectroscopy, 47(6), 753–763.

    Article  Google Scholar 

  • Cullum, B. M., & Angel, S. M. (1999). Development of a fiber optic REMPI probe for environmental contaminants. In Environmental Monitoring and Remediation Technologies. MA: SPIE.

    Google Scholar 

  • Degrandpre, M. D., & Burgess, L. W. (1990). A fiber-optic FT-NIR evanescent field absorbance sensor. Applied Spectroscopy, 44(2), 273–279.

    Article  Google Scholar 

  • DOE. (2001). Internal reflection sensor for the cone penetrometer DOE/EM-0611. Washington, DC: DOE Office of Environmental Management.

    Google Scholar 

  • Goleen, S. C., McCulloch, M., Thomas, B. L., Riley, R. G., Sklarew, D. S., Mong, G. M., et al. (1996). DOE methods for evaluating environmental and waste management samples. Richland, WA: US DOE.

    Google Scholar 

  • Goswami, K., Prohaska, J. D., Menon, A., Mendoza, E. A., & Lieberman, R. A. (1999). Evanescent wave sensor for detecting volatile organic compounds. In Photonics East. MA: SPIE.

    Google Scholar 

  • Hirschfeld, T., & Zeev-Hed, A. (1981). The Atlas of near infrared spectra. Philadelphia: Sadtler.

    Google Scholar 

  • Ho, C. K., & Hughes, R. C. (2002). in situ chemiresistor sensor package for real-time detection of volatile organic compounds in soil and groundwater. Sensors, 2(1), 23–34.

    Article  Google Scholar 

  • Ho, C. K., Itamura, M. T., Kelley, M. J., & Hughes, R. C. (2001). Review of chemical sensors for in situ monitoring of volatile contaminants. NM: Sandia National Laboratories.

    Google Scholar 

  • Inamuddin, D., & Mohammad, A. (2014). Green chromatographic techniques. DE: Springer.

    Book  Google Scholar 

  • Karlowatz, M., Kraft, M., & Mizaikoff, B. (2004). Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy. Analytical Chemistry, 76(9), 2643–2648.

    Article  Google Scholar 

  • Klavarioti, M., Kostarelos, K., Pourjabbar, A., & Ghandehari, M. (2014). In situ sensing of subsurface contamination—Part I: Near-infrared spectral characterization of alkanes, aromatics, and chlorinated hydrocarbons. Environmental Science and Pollution Research, 21(9), 5849–5860.

    Article  Google Scholar 

  • Kram, M. L., Keller, A. A., Rossabi, J., & Everett, L. G. (2001). DNAPL characterization methods and approaches, Part 1: Performance comparisons. Ground Water Monitoring and Remediation, 21(4), 109–123.

    Article  Google Scholar 

  • Krska, R., Taga, K., & Kellner, R. (1993). New IR fiber-optic chemical sensor for in situ measurements of chlorinated hydrocarbons in water. Applied Spectroscopy, 47(9), 1484–1487.

    Article  Google Scholar 

  • Long, J., Xu, J., Yang, Y., Wen, J., & Jia, C. (2011). A colorimetric array of metalloporphyrin derivatives for the detection of volatile organic compounds. Materials Science and Engineering B, 176(16), 1271–1276.

    Article  Google Scholar 

  • Looney, B., & Falta, R. W. (Eds.). (2000). Vadose zone science and technology solutions. Columbus, OH: Battelle Press.

    Google Scholar 

  • Maclean, A., Moran, C., Johnstone, W., Culshaw, B., Marsh, D., & Parker, P. (2003). Detection of hydrocarbon fuel spills using a distributed fibre optic sensor. Sensors and Actuators, A: Physical, 109(1), 60–67.

    Article  Google Scholar 

  • Martins, C. C., Doumer, M. E., Gallice, W. C., Dauner, A. L. L., Cabral, A. C., Cardoso, F. D., et al. (2015). Coupling spectroscopic and chromatographic techniques for evaluation of the depositional history of hydrocarbons in a subtropical estuary. Environmental Pollution, 205, 403–414.

    Article  Google Scholar 

  • McCue, R. P., Walsh, F., Walsh, J. E., & Regan, F. (2006). Modular fibre optic sensor for the detection of hydrocarbons in water. Sensors & Actuators: B. Chemical, 114(1), 438–444.

    Article  Google Scholar 

  • Mizaikoff, B., Taga, K., & Kellner, R. (1995). Infrared fiber optic gas sensor for chlorofluorohydrocarbons. Vibrational Spectroscopy, 8(2), 103–108.

    Article  Google Scholar 

  • Pepper, J. W., Wright, A. O., & Kenny, J. E. (2002). In situ measurements of subsurface contaminants with a multi-channel laser-induced fluorescence system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58(2), 317–331.

    Article  Google Scholar 

  • Pospíšilová, M., Kuncová, G., & Trögl, J. (2015). Fiber-optic chemical sensors and fiber-optic bio-sensors. Sensors (Basel, Switzerland), 15(10), 25208–25259.

    Article  Google Scholar 

  • Quinn, M. F., Alemeddine, O., Al-Awadi, E., Mukhopadhyay, A., Qabazard, A. M., Al-Rasheedi, M., et al. (2002). The application of laser-induced fluorescence techniques for the measurement of hydrocarbons in the groundwater of Kuwait. Instrumentation Science and Technology, 30(1), 79–95.

    Article  Google Scholar 

  • Raichlin, Y., & Katzir, A. (2008). Fiber-optic evanescent wave spectroscopy in the middle infrared. Applied Spectroscopy, 62(2), 72A.

    Google Scholar 

  • Reboucas, M. V., Brandão, D. S., Trindade, A., Pimentel, M. F., & Teixeira, L. S. G. (2011). Chemical composition determination of complex organic-aqueous mixtures of alcohols, acetone, acetonitrile, hydrocarbons and water by near-infrared spectroscopy. Vibrational Spectroscopy, 55(2), 172–182.

    Article  Google Scholar 

  • Roy, G., & Mielczarski, J. A. (2002). Infrared detection of chlorinated hydrocarbons in water at ppb levels of concentrations. Water Research, 36(7), 1902–1908.

    Article  Google Scholar 

  • Schweizer, G., Latka, I., Lehmann, H., & Willsch, R. (1997). Optical sensing of hydrocarbons in air or in water using UV absorption in the evanescent field of fibers. Sensors & Actuators: B. Chemical, 38(1), 150–153.

    Article  Google Scholar 

  • Spencer, K. (1999-last update). Detection of DNAPLs by Raman Spectroscopy. Available: http://www.eiclabs.com/Raman_Detection_of_DNAPLs.pdf, March 2017.

  • Workman, J., Jerry, Springsteen, A., & Workman, J., Jr. (1998). Applied spectroscopy (1 ed.). US: Academic Press.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Ghandehari .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghandehari, M., Kostarelos, K., Vimer, C.S. (2018). Remote and In Situ Monitoring of Subsurface Liquid Hydrocarbons. In: Optical Phenomenology and Applications . Smart Sensors, Measurement and Instrumentation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-70715-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70715-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70714-3

  • Online ISBN: 978-3-319-70715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics